CSCI10330/1330

Introduction to Computer Systems

CS33 Intro to Computer Systems -1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Welcome!

* Prof: Tom Doeppner

 HTAs: Naafi Ahmed, Nathan Benavides-Luu, Ed Bielawa,
Vivian Lu

* UTAs: Siddharth Diwan, Jeremy Fleming, Michael Fu,
Jamie Gabbay, Nathan Harbison, Jakobi Haskell, Nathan
Nguyen, Patrick Peng, Seth Sabar, Anton Tarazi, Mikayla
Walsh, Navaiya Williams, Matthias Yee, Camille Zhang

CS33 Intro to Computer Systems -2 Copyright © 2023 Thomas W. Doeppner. Al rights reserved.

What You’ll Learn

* Programming in C

« Data representation

* Programming in x86 assembler language

* High-level computer architecture

* Optimizing programs

* Linking and libraries

» Basic OS functionality

* Memory management

* Network programming (Sockets)

* Multithreaded programming (POSIX threads)

CS33 Intro to Computer Systems -3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Prerequisites:
What You Need to Know

 Ability to program in an object-oriented or
procedural language (e.g., Java) and
knowledge of basic algorithms

— CSCI 0160 or CSCI1 0180 or CSCI 0200

CS33 Intro to Computer Systems -4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

What You’ll Do

Nine 2-hour labs
Eight one- to two-week programming
assignments

— one-on-one code review with a TA for each

No written exams!

Top Hat for in-class quizzes (sections 1 only)
— not anonymous: a small portion of your grade
— full credit (A) for each correct answer
— partial credit (B) for each wrong answer
— NC for not answering
— one to three or so questions per class

CS33 Intro to Computer Systems -5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Please visit https://ithelp.brown.edu/kb/articles/top-hat-student-guide to find
instructions for downloading the Top Hat software to your laptop or smartphone.

Note that there is an additional lab that is optional. If you complete it, it will take the
place of one other lab.

https://ithelp.brown.edu/kb/articles/top-hat-student-guide

CSCI 1330

* Master’s students only

+ Weekly homeworks, just for you
— 10% of your grade

CS33 Intro to Computer Systems -6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Gear-Up Sessions

» Optional weekly sessions

— handle questions about the week’s assignment and
course material
— soon after each assignment is released
» first session is 8pm Monday, 9/11
» via zoom (link TBD)

CS33 Intro to Computer Systems -7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Take Aways

» A few questions on lecture material on the
web site after each lecture

— completely optional
— not graded
* They help you digest the lecture material

— you may discuss them with each other, with TAs,
and with the instructor

CS33 Intro to Computer Systems -8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Collaboration Policy

Goal is to learn from doing the assignments

You may:
— work with others in the design of your projects
— help one another debug
You may not:
— use code from other sources (including Al tools)
We run MOSS when relevant

Details are here

CS33 Intro to Computer Systems -9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

The official collaboration policy is at https://docs.google.com/document/d/122--
3xLYmZ_cNAUuYxkkGeAmu_GOxLIYuP3K-_Qz2Fc/edit?usp=sharing. Note that this
year’s policy is considerably different from last year’s.

Collaborative Hours

* TA hours are collaborative
— TAs will work with you and connect you with other
students with similar issues
» you may work out solutions with others

— your code should be your own, but you may
discuss it with others

CS33 Intro to Computer Systems -10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

I-10

Code Reviews

 After each project, you will meet with a TA for
a code review — TA will ask you questions
about your code

— most (randomly selected) students will get just one
question

— others will get a lot of questions
— 10-15 minutes per project
» Code reviews are easy and fun for those who
did the assignment completely on their own

* They could be rather difficult for others

CS33 Intro to Computer Systems -1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

-11

Textbook

« Computer Systems: A Programmer’s
Perspective, 374 Edition, Bryant and
O’Hallaron, Prentice Hall 2015

CS33 Intro to Computer Systems -12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS33 Intro to Computer Systems

=13

Copyright © 2023 Thomas W. Doeppner. All rights reserved.

If Programming Languages

Were Cars ...
* Java would be an SUV
— automatic transmission
— stay-in-lane technology
— adaptive cruise control
— predictive braking
— gets you where you want to go
» safe
» boring

* Pyret would be a Tesla
— you drive it like an SUV

» (avoid autopilot)

» definitely cooler

» but limited range

CS33 Intro to Computer Systems -14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

If Programming Languages

Were Cars ...
» C would be a sports car
— manual everything
— dangerous
—fun
— you really need to know what you’re doing!

CS33 Intro to Computer Systems -15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

For an interesting, though tough-going discussion of why C is relevant, see
https://www.cs.kent.ac.uk/people/staff/srk21 /research /papers/kell1 7some-
preprint.pdf.

https://www.cs.kent.ac.uk/people/staff/srk21/research/papers/kell17some-preprint.pdf
https://www.cs.kent.ac.uk/people/staff/srk21/research/papers/kell17some-preprint.pdf

U-Turn Algorithm
(Java and Pyret Version)

Switch on turn signal
Slow down to less than 3 mph
Check for oncoming traffic

Press the accelerator lightly while turning the
steering wheel pretty far in the direction you
want to turn

5. Lift your foot off the accelerator and coast
through the turn; press accelerator lightly as
needed

6. Enter your new lane and begin driving

Ll o

CS33 Intro to Computer Systems -16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

U-Turn Algorithm
(C Version)

. Enter turn at 30 mph in second gear

. Position left hand on steering wheel so you can
quickly turn it one full circle

. Ease off accelerator; fully depress clutch

. Quickly turn steering wheel either left or right as
far as possible

. A split second after starting turn, pull hard on
handbrake, locking rear wheels

. As car (rapidly) rotates, restore steering wheel to
straight-ahead position and shift to first gear

. When car has completed 180° turn, release
handbrake and clutch, fully depress accelerator

CS33 Intro to Computer Systems -17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

History of C

» Early 1960s: CPL (Combined Programming
Language)

— developed at Cambridge University and University
of London

* 1966: BCPL (Basic CPL): simplified CPL
— intended for systems programming
* 1969: B: simplified BCPL (stripped down so
its compiler would run on minicomputer)
— used to implement earliest Unix
» Early 1970s: C: expanded from B

— motivation: they wanted to play “Space Travel” on
minicomputer

— used to implement all subsequent Unix OSes

CS33 Intro to Computer Systems -18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

See http://en.wikipedia.org/wiki/C_programming language.

More History of C

1978: Textbook by Brian Kernighan and
Dennis Ritchie (K&R), 15t edition, published

— de facto standard for the language
1989: ANSI C specification (ANSI C)

— 1988: K&R, 2 edition, published, based on draft of
ANSIC

1990: ISO C specification (C90)
— essentially ANSI C

1999: Revised ISO C specification (C99)

» 2011: Further revised ISO C specification
(C11)

— not widely used

CS33 Intro to Computer Systems -19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33

Introduction to C

CS33 Intro to Computer Systems -20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Some of this lecture is based on material prepared by Pascal Van Hentenryck.

A C Program

int main() {
printf ("Hello world!\n");
return 0;

CS33 Intro to Computer Systems -21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Following K&R, this is everyone’s first C program. Note that C programs start in a
function called main, which is a function returning an integer. This integer is
interpreted as an error code, where O means no errors and anything else is some sort of
indication of a problem. We’ll see later how we can pass arguments to main.

Compiling and Running It

$ 1s

hello.c

$ gcc hello.c

$ 1s

a.out hello.c

$./a.out

Hello world!

$ gcc -o hello hello.c
$ 1s

a.out hello hello.c
$./hello

Hello world!

S

CS33 Intro to Computer Systems -22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

gce (the Gnu C compiler), as do other C compilers, calls its output “a.out” by default.
(This is supposed to mean the output of the assembler, since the original C compilers
compiled into assembly language, which then had to be sent to the assembler.) To give
the output of the C compiler, i.e., the executable, a more reasonable name, use the “-0”
option.

What’s gcc?

» gnu C compiler
— it’s actually a two-part script

» part one compiles files containing programs written
in C (and certain other languages) into binary
machine code (known as object code)

» part two takes the just-compiled object code and
combines it with other object code from libraries to
create an executable

+ the executable can be loaded into memory and
run by the computer

CS33 Intro to Computer Systems -23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

What’s gnu? It’s a project of the Free Software Foundation and stands for “gnu’s not
Unix.” That it’s not Unix was pretty important when the gnu work was started in the
80s. At the time, AT&T was the owner of the Unix trademark and was very touchy about
it. Today the trademark is owned by The Open Group, who is less touchy about it.

gcc Flags

* gcc [-Wall] [-g] [-std=gnu99]
. -Wall

» provide warnings about pretty much everything that
might conceivably be objectionable

*-g
» provide extra information in the object code, so that

gdb (gnu debugger) can provide more informative
debugging info

» discussed in lab
+ -std=gnu99

» use the 1999 version of C syntax, rather than the
1990 version

CS33 Intro to Computer Systems 1-24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

The use of the —-Wall flag will probably produce lots of warning messages about things
you had no idea might possibly be considered objectionable.

Unless you’re really concerned about getting the last ounce of performance from your
program, it’s a good idea always to use the —g flag.

Most of what we will be doing is according to the C90 specification. The C99
specification cleaned a few things up and added a few features. There’s also a C11
(2011) specification that is not yet widely used.

Declarations in C

int main() { Types are promises
— promises can be broken

s Types specify memory sizes
float f; — cannot be broken
char c;

return 0;

CS33 Intro to Computer Systems -25 Copyright © 2023 Thomas W. Doeppner. Al rights reserved.

Declarations in C

int main() { Declarations reserve memory space
) . — where?
int i; Local variables can be uninitialized

float f; =t
— whatever was there before

char c;

return 0;

CS33 Intro to Computer Systems 1-26 Copyright © 2023 Thomas W. Doeppner. Al rights reserved.

Declarations in C

int main() { i | 1435097815 \

int i; f| 6.1734e-23
b

float f;
char c;

return 0;

}

CS33 Intro to Computer Systems 1-27 Copyright ® 2023 Thomas W. Doeppner. Al rights reserved.

Using Variables

int main() {
int i;
float f£f;
char c;
i = 34;
c = lal’.

f 6.1734e-23

CS33 Intro to Computer Systems

|-28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

printf Again

int main() {

int i;
float f;
char c; $./a.out
c="a'; 34 a
printf ("%d\n",1i);
printf ("$d\t%c\n",1i,c);
CS33 Intro to Computer Systems -29 Copyright © 2023 Thomas W. Doeppner. Al rights reserved.

printf Again

int main() { $./a.out
34 a

printf ("$d\t%c\n",1i,c);

Two parts
» formatting instructions
* arguments

CS33 Intro to Computer Systems =30 Copyright © 2023 Thomas W. Doeppner. Al rights reserved.

printf Again

int main() { $./a.out
34 a

printf ("$d\t%c\n",1i,c);

Formatting instructions
+ Special characters

— \n : newline

-\t :tab

— \b : backspace

— \" : double quote

— \\ : backslash

CS33 Intro to Computer Systems 1-31 Copyright © 2023 Thomas W. Doeppner. Al rights reserved.

printf Again

int main() {

printf ("$d\t%c",i,c);

$./a.out
34 a

Formatting instructions
* Types of arguments

— %d: integer

— %f: floating-point number

— %c: character

CS33 Intro to Computer Systems

Copyright ® 2023 Thomas W. Doeppner. All rights reserved.

printf Again

int main() { $./a.out
34 a

printf ("%$6d%3c",1i,c);

Formatting instructions

* %6d: decimal integer at least 6 characters wide

+ %6f: floating point at least 6 characters wide

* %6.2f: floating point at least 6 wide, 2 after the decimal point

CS33 Intro to Computer Systems -33 Copyright © 2023 Thomas W. Doeppner. Al rights reserved.

printf Again

int main() {
int 1i;
float celsius;
for (i=30; i<34; i++) {
celsius = (5.0/9.0)*(i-32.0);
printf ("%$3d %6.1f\n", i, celsius);

}

$./a.out
> 130 -1.1
31 -0.6
32 0.0
33 0.6

CS33 Intro to Computer Systems 1-34 Copyright © 2023 Thomas W. Doeppner. Al rights reserved.

For Loops
int main() {

before the loop
/ should loop continue?
int i;

float cel)sius;

for (i=30 ; i<34 ; i=i+1) {
celsius = (5.0/9.0)*(i-32.0);
printf ("%$3d %6.1f\n", i, celsius);

\ after each iteration

CS33 Intro to Computer Systems 1-35 Copyright © 2023 Thomas W. Doeppner. Al rights reserved.

Note that the “should loop continue” test is done at the beginning of each
execution of the loop. Thus, if in the slide the test were “i<30”, there would be
no executions of the body of the loop and nothing would be printed.

Some Primitive Data Types

char
— a single byte: interpreted as either an 8-bit integer or a character
short
— integer: 16 bits
int
— integer: 16 bits or 32 bits (implementation dependent)
long
— integer: either 32 bits or 64 bits, depending on the architecture
long long
— integer: 64 bits
float
— single-precision floating point
double

— double-precision floating point

CS33 Intro to Computer Systems 1-36 Copyright © 2023 Thomas W. Doeppner. Al rights reserved.

The sizes of integers depends on the underlying architecture. In the earliest
versions of C, the int type had a size equal to that of pointers on the machine.
However, the current definitions of C apply this rule to the long type. The int
type has a size of 32 bits on pretty much all of today’s computers.

For the sunlab computers (and probably your own computer), a long is 64
bits.

What is the size of my int?

int main () {

int i;

printf ("%d\n", sizeof(i));
}

$./a.out
4

sizeof
— returns the size of a variable in bytes
— very very very very very very important function in C

CS33 Intro to Computer Systems 1-37 Copyright © 2023 Thomas W. Doeppner. Al rights reserved.

Note that the argument to sizeof need not be a variable but could be the name
of a type. For example, “sizeof(int)” is legal and returns 4 on most machines.

Arrays

int a[100];

int i;

a[0]
a[1]
a[2]

a[99]

CS33 Intro to Computer Systems 1-38 Copyright ® 2023 Thomas W. Doeppner. All rights reserved.

The array a and the variable i really are arranged in memory as shown,
assuming that “higher” memory addresses are at the bottom of the diagram
and “lower” memory addresses are at the top. We draw it this way because this
is how one normally draws pictures of memory. However, later in the course
we will reverse this and arrange our memory diagrams so that higher
addresses are at the top and lower addresses are at the bottom.

Arrays

int main() {
int a[100];

int 1i;
for (i=0;1<100;i++)
al[i] = 1i;

CS33 Intro to Computer Systems -39 Copyright ® 2023 Thomas W. Doeppner. All rights reserved.

After executing the program, memory should contain what’s shown in the
diagram.

Array Bounds

int main() {
int a[100];
int i; i
for (i=0;1<=100;i++) a[0]
al[il = 1i; a[1]

a[99] 99
a[100] 100

CS33 Intro to Computer Systems 1-40 Copyright ® 2023 Thomas W. Doeppner. All rights reserved.

Here the for loop goes one element too far, storing 100 into a[100], despite the
fact that we didn’t declare the array to be that large.

Arrays inC

C Arrays = Storage + Indexing
— no bounds checking
— no initialization

WELCOME TO THE JUNGLE

CS33 Intro to Computer Systems -41 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Welcome to the Jungle

int main()

int a[100]; i
int i; a[0]
for (i=0;1i<=100;1i++) a[1]

a[i] = i; a[2]

printf ("$d\n", j);

|]
int §=8;

$./a.out a[99]
2222 j 8 |

CS33 Intro to Computer Systems 1-42 Copyright ® 2023 Thomas W. Doeppner. All rights reserved.

Note how j is both declared and initialized in the same statement.

Quiz 1

* What is printed for the value of j when
the program is run?

a) 0

b) 8

c) 100

d) indeterminate

CS33 Intro to Computer Systems 1-43 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

This quiz doesn't count towards your grade!

1-43

Welcome to the Jungle

int main() {

int j=8;

int a[100]; i

int i; a[0]

for (i=0;1i<=100; i++) a[1]
a[i] = i; a[2]

printf ("$d\n", j);

$./a.out a[99] 929
100 j 100

CS33 Intro to Computer Systems 1-44 Copyright ® 2023 Thomas W. Doeppner. All rights reserved.

Note that j occupies memory where a[100] would be if a were declared to be
that large. Thus, j’s location is overwritten when the program goes beyond the
bounds for a.

Welcome to the Jungle

int main() {
int j;
int a[100];
int 1i;
for (i=0;1i<100; i++)
alil = 1i;
printf ("$d\n", 3Jj):;

$./a.out
7?77

CS33 Intro to Computer Systems 1-45 Copyright ® 2023 Thomas W. Doeppner. All rights reserved.

Note that j no longer has an initial value. Note also that the for loop ends just
after setting a[99] to 99.

Quiz 2

* What is printed for the value of j when
the program is run?

a) 0

b) 8

c) 100

d) indeterminate

CS33 Intro to Computer Systems 1-46 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

This quiz also doesn't count towards your grade.

I-46

Welcome to the Jungle

int main() {
int j;
int a[100]; i
int i; a[0]
for (i=0;1<100; i++) a[1]
a[i] = i; a[2]

printf ("$d\n", j);

$./a.out a[99] 99
-1880816380 j -1880816380

CS33 Intro to Computer Systems 1-47 Copyright ® 2023 Thomas W. Doeppner. All rights reserved.

Welcome to the Jungle

int main() {
int a[l100];

int i;
al[-3] = 25;
printf ("$d\n", al[-3]):;
}
$./a.out
25
CS33 Intro to Computer Systems 1-48 Copyright © 2023 Thomas W. Doeppner. Al rights reserved.

This code is not guaranteed to work!

Welcome to the Jungle

int main() {
int a[100];
int 1i; ﬂi"i’"
a[-3] = 25; o
al[l1l1111111] = 6;
printf ("%d\n", al[-3]);

} $./a.out

Segmentation fault

What is a segmentation fault? :
» attempted access to an invalid memory location

CS33 Intro to Computer Systems 1-49 Copyright © 2023 Thomas W. Doeppner. Al rights reserved.

Sometimes the error message is “bus error.” Both terms (segmentation fault
and bus error) come from the original C/Unix implementation on the PDP-11
computer. A segmentation fault resulted from accessing memory that might
exist, but for which the accessor has no permission. A bus error results from
trying to use an address that makes no sense.

Function Definitions

int main () {

. main
printf ("$d\n", fact(5)):; T
return 0; * is just another
} function

« starts the program
int fact(int i) {

::.nt k; All functions
el . * have a return type
for (res=1,k=1; k<=i; k++)

res = res * k;

return res;

CS33 Intro to Computer Systems -50 Copyright © 2023 Thomas W. Doeppner. Al rights reserved.

Note the use of the comma in the initialization part of the for loop: the

initialization part may have multiple parts separated by commas, each
executed in turn.

Compiling It

$ gcc -o fact fact.c
$./fact
120

CS33 Intro to Computer Systems -51 Copyright © 2023 Thomas W. Doeppner. Al rights reserved.

Function Definitions

int main() {
printf ("$£f\n", fact(5)):;
return 0;
}
float fact(int i) {
int k;
float res;
for (res=1,k=1; k<=i; k++)
res = res * k;
return res;

CS33 Intro to Computer Systems -52 Copyright © 2023 Thomas W. Doeppner. Al rights reserved.

Not only has the definition of main been placed before the definition of fact,
but also fact has been changed so that it now returns a float rather than an
int.

Function Definition

$ gcc -o fact fact.c

main.c:27: warning: type mismatch with previous implicit
declaration

main.c:23: warning: previous implicit declaration of
'fact'

main.c:27: warning: 'fact' was previously implicitly
declared to return 'int'

$./fact
1079902208

CS33 Intro to Computer Systems -53 Copyright © 2023 Thomas W. Doeppner. Al rights reserved.

If a function, such as fact, is encountered by the compiler before it has
encountered a declaration or definition for it, the compiler assumes that the
function returns an int. This rather arbitrary decision is part of the language
for “backwards-compatibility” reasons — so that programs written in older
versions of C still compile on newer (post-1988) compilers.

Function Declarations

float fact(int i) ;

int main() { — 1
printf ("$£\n", fact (5));|Declares the function

return 0;

}
float fact(int i) {
int k;
float res;
for (res=0,k=1; k<=i; k++)
res = res * k;
return res:
$./fact
120.000000

Here we have a declaration of fact before its definition. (If the two are different,
gcc will complain.)

Methods

* C has functions

« Java has methods
— methods implicitly refer to objects
— C doesn’t have objects

* Don’t use the “M” word
— it’s just wrong

CS33 Intro to Computer Systems -55 Copyright © 2023 Thomas W. Doeppner. Al rights reserved.

for (;;)
printf(“C does not have methods!\n”);

Swapping

Write a function to swap two ints

void swap(int i, int j) {

@ Parameters are
}

passed by value

int main() {
int a = 4;
int b = 8;
swap (a, b);
printf("a:%d b:%d", a, b);

CS33 Intro to Computer Systems 1-56 Copyright © 2023 Thomas W. Doeppner. Al rights reserved.

Swapping

Write a function to swap two ints

void swap(int i, int j) {

int tmp;

tmp = §; § = i; i = tmp; Darn!
}
int main() { s.jl/a{)(.)gt S

int a = 4; a: ‘ 0

int b = 8;

swap (a, b);
printf ("a:%d b:%d", a, b);

CS33 Intro to Computer Systems I-57 Copyright © 2023 Thomas W. Doeppner. Al rights reserved.

This doesn't work because, when a function is called, copies are made of the
arguments and it's these copies that are supplied to the function. Thus, if the
function modifies its arguments, it's modifying only the copies. This is known
as "pass by value".

Why “pass by value”?

* Fortran, for example, passes parameters “by
reference”

« Early implementations had the following
problem (shown with C syntax):

int main() {
function (2) ;

printf ("%d\n", 2);
} Lo $./a.out
void function (int x) { 3
X = 3;
}
CS33 Intro to Computer Systems 1-58 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Note, this has been fixed in the (ancient) Fortran programming language (by recognizing

that literals such as "2" are special). Since C passes parameters by value, this has never
been a problem in C.

Variables and Memory

What does
int x;
do?

* It tells the compiler:

| want x to be the name of an area of memory
that’s big enough to hold an int.

What’s memory?

CS33 Intro to Computer Systems 1-59 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

We'll discuss "what's an int" in a couple weeks.

11I-59

Industry Partners Program (IPP)

Find and apply for jobs and internships in CS
Learn about IPP member companies via tech talks
Attend resumé reviews with industry professionals

https://cs.brown.edu/about/partners

To sign up for notifications about upcoming events:
— http://bit.ly/brownipp

Questions? Contact Lauren_Clarke@brown.edu

CS33 Intro to Computer Systems 1-60 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

1-60

