
CS33 Intro to Computer Systems I–1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CSCI 0330/1330
Introduction to Computer Systems

CS33 Intro to Computer Systems I–2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Welcome!
• Prof: Tom Doeppner
• HTAs: Naafi Ahmed, Nathan Benavides-Luu, Ed Bielawa,

Vivian Lu
• UTAs: Siddharth Diwan, Jeremy Fleming, Michael Fu,

Jamie Gabbay, Nathan Harbison, Jakobi Haskell, Nathan
Nguyen, Patrick Peng, Seth Sabar, Anton Tarazi, Mikayla
Walsh, Navaiya Williams, Matthias Yee, Camille Zhang

CS33 Intro to Computer Systems I–3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

What You’ll Learn

• Programming in C
• Data representation
• Programming in x86 assembler language
• High-level computer architecture
• Optimizing programs
• Linking and libraries
• Basic OS functionality
• Memory management
• Network programming (Sockets)
• Multithreaded programming (POSIX threads)

CS33 Intro to Computer Systems I–4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Prerequisites:
What You Need to Know

• Ability to program in an object-oriented or
procedural language (e.g., Java) and
knowledge of basic algorithms

– CSCI 0160 or CSCI 0180 or CSCI 0200

CS33 Intro to Computer Systems I–5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

What You’ll Do

• Nine 2-hour labs
• Eight one- to two-week programming

assignments
– one-on-one code review with a TA for each

• No written exams!
• Top Hat for in-class quizzes (sections 1 only)

– not anonymous: a small portion of your grade
– full credit (A) for each correct answer
– partial credit (B) for each wrong answer
– NC for not answering
– one to three or so questions per class

CS33 Intro to Computer Systems I–6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CSCI 1330

• Masterʼs students only
• Weekly homeworks, just for you

– 10% of your grade

CS33 Intro to Computer Systems I–7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Gear-Up Sessions

• Optional weekly sessions
– handle questions about the week’s assignment and

course material
– soon after each assignment is released

» first session is 8pm Monday, 9/11
» via zoom (link TBD)

CS33 Intro to Computer Systems I–8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Take Aways

• A few questions on lecture material on the
web site after each lecture

– completely optional
– not graded

• They help you digest the lecture material
– you may discuss them with each other, with TAs,

and with the instructor

CS33 Intro to Computer Systems I–9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Collaboration Policy
• Goal is to learn from doing the assignments
• You may:

– work with others in the design of your projects
– help one another debug

• You may not:
– use code from other sources (including AI tools)

• We run MOSS when relevant
• Details are here

https://docs.google.com/document/d/122--3xLYmZ_cNAUuYxkkGeAmu_GOxLlYuP3K-_Qz2Fc/edit?usp=sharing

CS33 Intro to Computer Systems I–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Collaborative Hours

• TA hours are collaborative
– TAs will work with you and connect you with other

students with similar issues
» you may work out solutions with others

– your code should be your own, but you may
discuss it with others

CS33 Intro to Computer Systems I–11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Code Reviews

• After each project, you will meet with a TA for
a code review – TA will ask you questions
about your code

– most (randomly selected) students will get just one
question

– others will get a lot of questions
– 10-15 minutes per project

• Code reviews are easy and fun for those who
did the assignment completely on their own

• They could be rather difficult for others

CS33 Intro to Computer Systems I–12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Textbook

• Computer Systems: A Programmer’s
Perspective, 3rd Edition, Bryant and
O’Hallaron, Prentice Hall 2015

CS33 Intro to Computer Systems I–13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS33 Intro to Computer Systems I–14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

If Programming Languages
Were Cars …

• Java would be an SUV
– automatic transmission
– stay-in-lane technology
– adaptive cruise control
– predictive braking
– gets you where you want to go

» safe
» boring

• Pyret would be a Tesla
– you drive it like an SUV

» (avoid autopilot)
» definitely cooler
» but limited range

CS33 Intro to Computer Systems I–15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

If Programming Languages
Were Cars …

• C would be a sports car
– manual everything
– dangerous
– fun
– you really need to know what you’re doing!

CS33 Intro to Computer Systems I–16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

U-Turn Algorithm
(Java and Pyret Version)

1. Switch on turn signal
2. Slow down to less than 3 mph
3. Check for oncoming traffic
4. Press the accelerator lightly while turning the

steering wheel pretty far in the direction you
want to turn

5. Lift your foot off the accelerator and coast
through the turn; press accelerator lightly as
needed

6. Enter your new lane and begin driving

CS33 Intro to Computer Systems I–17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

U-Turn Algorithm
(C Version)

1. Enter turn at 30 mph in second gear
2. Position left hand on steering wheel so you can

quickly turn it one full circle
3. Ease off accelerator; fully depress clutch
4. Quickly turn steering wheel either left or right as

far as possible
5. A split second after starting turn, pull hard on

handbrake, locking rear wheels
6. As car (rapidly) rotates, restore steering wheel to

straight-ahead position and shift to first gear
7. When car has completed 180° turn, release

handbrake and clutch, fully depress accelerator

CS33 Intro to Computer Systems I–18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

History of C

• Early 1960s: CPL (Combined Programming
Language)

– developed at Cambridge University and University
of London

• 1966: BCPL (Basic CPL): simplified CPL
– intended for systems programming

• 1969: B: simplified BCPL (stripped down so
its compiler would run on minicomputer)

– used to implement earliest Unix
• Early 1970s: C: expanded from B

– motivation: they wanted to play “Space Travel” on
minicomputer

– used to implement all subsequent Unix OSes

CS33 Intro to Computer Systems I–19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

More History of C

• 1978: Textbook by Brian Kernighan and
Dennis Ritchie (K&R), 1st edition, published

– de facto standard for the language
• 1989: ANSI C specification (ANSI C)

– 1988: K&R, 2nd edition, published, based on draft of
ANSI C

• 1990: ISO C specification (C90)
– essentially ANSI C

• 1999: Revised ISO C specification (C99)
• 2011: Further revised ISO C specification

(C11)
– not widely used

CS33 Intro to Computer Systems I–20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Introduction to C

CS33 Intro to Computer Systems I–21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

A C Program

int main() {
 printf("Hello world!\n");
 return 0;
}

CS33 Intro to Computer Systems I–22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Compiling and Running It
$ ls

hello.c

$ gcc hello.c

$ ls

a.out hello.c

$./a.out

Hello world!

$ gcc -o hello hello.c

$ ls

a.out hello hello.c

$./hello

Hello world!

$

CS33 Intro to Computer Systems I–23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

What’s gcc?

• gnu C compiler
– it’s actually a two-part script

» part one compiles files containing programs written
in C (and certain other languages) into binary
machine code (known as object code)

» part two takes the just-compiled object code and
combines it with other object code from libraries to
create an executable
• the executable can be loaded into memory and

run by the computer

CS33 Intro to Computer Systems I–24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

gcc Flags

• gcc [-Wall] [-g] [-std=gnu99]
• -Wall

» provide warnings about pretty much everything that
might conceivably be objectionable

• -g
» provide extra information in the object code, so that

gdb (gnu debugger) can provide more informative
debugging info
• discussed in lab

• -std=gnu99
» use the 1999 version of C syntax, rather than the

1990 version

CS33 Intro to Computer Systems I–25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Declarations in C

int main() {

 int i;

 float f;

 char c;

 return 0;

}

Types are promises
– promises can be broken

Types specify memory sizes
– cannot be broken

CS33 Intro to Computer Systems I–26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Declarations in C

int main() {

 int i;

 float f;

 char c;

 return 0;

}

Declarations reserve memory space
– where?

Local variables can be uninitialized
– junk
– whatever was there before

CS33 Intro to Computer Systems I–27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Declarations in C

int main() {

 int i;

 float f;

 char c;

 return 0;

}

1435097815
6.1734e-23

þ

i
f
c

CS33 Intro to Computer Systems I–28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Using Variables

int main() {
 int i;
 float f;
 char c;
 i = 34;
 c = 'a';
}

34
6.1734e-23

a

i
f
c

CS33 Intro to Computer Systems I–29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

printf Again

i
f
c $./a.out

34
34 a

int main() {
 int i;
 float f;
 char c;
 i = 34;
 c = 'a';
 printf("%d\n",i);
 printf("%d\t%c\n",i,c);
}

CS33 Intro to Computer Systems I–30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

printf Again

i
f

$./a.out
34 a

int main() {
 …
 printf("%d\t%c\n",i,c);
}

Two parts
• formatting instructions
• arguments

CS33 Intro to Computer Systems I–31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

printf Again

i
f

$./a.out
34 a

int main() {
 …
 printf("%d\t%c\n",i,c);
}

Formatting instructions
• Special characters

– \n : newline
– \t : tab
– \b : backspace
– \" : double quote
– \\ : backslash

CS33 Intro to Computer Systems I–32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

printf Again

i
f

$./a.out
34 a

int main() {
 …
 printf("%d\t%c",i,c);
}

Formatting instructions
• Types of arguments

– %d: integer
– %f: floating-point number
– %c: character

CS33 Intro to Computer Systems I–33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

printf Again

i
f

$./a.out
 34 a

int main() {
 …
 printf("%6d%3c",i,c);
}

Formatting instructions
• %6d: decimal integer at least 6 characters wide
• %6f: floating point at least 6 characters wide
• %6.2f: floating point at least 6 wide, 2 after the decimal point

CS33 Intro to Computer Systems I–34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

printf Again

i
f

int main() {
 int i;
 float celsius;
 for(i=30; i<34; i++) {
 celsius = (5.0/9.0)*(i-32.0);
 printf("%3d %6.1f\n", i, celsius);
 }
}

$./a.out
 30 -1.1
 31 -0.6
 32 0.0
 33 0.6

CS33 Intro to Computer Systems I–35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

For Loops

i
f

int main() {
 int i;
 float celsius;
 for (i=30 ; i<34 ; i=i+1) {
 celsius = (5.0/9.0)*(i-32.0);
 printf("%3d %6.1f\n", i, celsius);
 }
}

before the loop

after each iteration

should loop continue?

CS33 Intro to Computer Systems I–36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Some Primitive Data Types
char

– a single byte: interpreted as either an 8-bit integer or a character
short

– integer: 16 bits
int

– integer: 16 bits or 32 bits (implementation dependent)
long

– integer: either 32 bits or 64 bits, depending on the architecture
long long

– integer: 64 bits
float

– single-precision floating point
double

– double-precision floating point

CS33 Intro to Computer Systems I–37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

What is the size of my int?

i
f

int main() {
 int i;
 printf("%d\n", sizeof(i));
}

$./a.out
4

sizeof
– returns the size of a variable in bytes
– very very very very very very important function in C

CS33 Intro to Computer Systems I–38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Arrays

int main() {
 int a[100];
 int i;
}

i
a[0]
a[1]
a[2]

a[99]

.

.

.

CS33 Intro to Computer Systems I–39 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Arrays

int main() {
 int a[100];
 int i;
 for(i=0;i<100;i++)
 a[i] = i;
}

100
0

i
a[0]

1
2

99

a[1]
a[2]

a[99]

.

.

.

CS33 Intro to Computer Systems I–40 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Array Bounds

int main() {
 int a[100];
 int i;
 for(i=0;i<=100;i++)
 a[i] = i;
}

.

.

.

101
0

i
a[0]

1
2

99

a[1]
a[2]

a[99]
100a[100]

CS33 Intro to Computer Systems I–41 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Arrays in C

C Arrays = Storage + Indexing
– no bounds checking
– no initialization

WELCOME TO THE JUNGLE

CS33 Intro to Computer Systems I–42 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Welcome to the Jungle

int main() {
 int j=8;
 int a[100];
 int i;
 for(i=0;i<=100;i++)
 a[i] = i;
 printf("%d\n", j);
}

$./a.out
 ????

i
a[0]
a[1]
a[2]

a[99]

.

.

.

8j

CS33 Intro to Computer Systems I–43 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1

• What is printed for the value of j when
the program is run?
a) 0
b) 8
c) 100
d) indeterminate

CS33 Intro to Computer Systems I–44 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Welcome to the Jungle

int main() {
 int j=8;
 int a[100];
 int i;
 for(i=0;i<=100;i++)
 a[i] = i;
 printf("%d\n", j);
}

$./a.out
 100

101
0

i
a[0]

1
2

99

a[1]
a[2]

a[99]

.

.

.

100j

CS33 Intro to Computer Systems I–45 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Welcome to the Jungle

int main() {
 int j;
 int a[100];
 int i;
 for(i=0;i<100;i++)
 a[i] = i;
 printf("%d\n", j);
}

$./a.out
???

i
a[0]
a[1]
a[2]

a[99]

.

.

.

j

CS33 Intro to Computer Systems I–46 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2

• What is printed for the value of j when
the program is run?
a) 0
b) 8
c) 100
d) indeterminate

CS33 Intro to Computer Systems I–47 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Welcome to the Jungle

int main() {
 int j;
 int a[100];
 int i;
 for(i=0;i<100;i++)
 a[i] = i;
 printf("%d\n", j);
}

$./a.out
 -1880816380

100
0

i
a[0]

1
2

99

a[1]
a[2]

a[99]

.

.

.

-1880816380j

CS33 Intro to Computer Systems I–48 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Welcome to the Jungle

int main() {
 int a[100];
 int i;
 a[-3] = 25;
 printf("%d\n", a[-3]);
}

$./a.out
25

CS33 Intro to Computer Systems I–49 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Welcome to the Jungle

i
f

int main() {
 int a[100];
 int i;
 a[-3] = 25;
 a[11111111] = 6;
 printf("%d\n", a[-3]);
} $./a.out

Segmentation fault

What is a segmentation fault?
• attempted access to an invalid memory location

CS33 Intro to Computer Systems I–50 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Function Definitions

i
f

int main() {
 printf("%d\n", fact(5));
 return 0;
}

int fact(int i) {
 int k;
 int res;
 for(res=1,k=1; k<=i; k++)
 res = res * k;
 return res;
}

main
• is just another

function
• starts the program

All functions
• have a return type

CS33 Intro to Computer Systems I–51 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Compiling It

$ gcc –o fact fact.c
$./fact
120

CS33 Intro to Computer Systems I–52 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Function Definitions

i
f

int main() {
 printf("%f\n", fact(5));
 return 0;
}
float fact(int i) {
 int k;
 float res;
 for(res=1,k=1; k<=i; k++)
 res = res * k;
 return res;
}

CS33 Intro to Computer Systems I–53 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Function Definitions

$ gcc –o fact fact.c
main.c:27: warning: type mismatch with previous implicit
declaration
main.c:23: warning: previous implicit declaration of
'fact'
main.c:27: warning: 'fact' was previously implicitly
declared to return 'int'

$./fact
1079902208

CS33 Intro to Computer Systems I–54 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Function Declarations

i
f

float fact(int i);

int main() {
 printf("%f\n", fact(5));
 return 0;
}
float fact(int i) {
 int k;
 float res;
 for(res=0,k=1; k<=i; k++)
 res = res * k;
 return res;
}

Declares the function

$./fact
120.000000

CS33 Intro to Computer Systems I–55 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Methods

• C has functions
• Java has methods

– methods implicitly refer to objects
– C doesn’t have objects

• Don’t use the “M” word
– itʼs just wrong

?

CS33 Intro to Computer Systems I–56 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Swapping

Write a function to swap two ints

void swap(int i, int j) {

}
int main() {
 int a = 4;
 int b = 8;
 swap(a, b);
 printf("a:%d b:%d", a, b);
}

Parameters are
passed by value

CS33 Intro to Computer Systems I–57 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Swapping

Write a function to swap two ints

void swap(int i, int j) {
 int tmp;
 tmp = j; j = i; i = tmp;
}
int main() {
 int a = 4;
 int b = 8;
 swap(a, b);
 printf("a:%d b:%d", a, b);
}

$./a.out
a:4 b:8

Darn!

CS33 Intro to Computer Systems I–58 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Why “pass by value”?

• Fortran, for example, passes parameters “by
reference”

• Early implementations had the following
problem (shown with C syntax):

int main() {
 function(2);
 printf("%d\n", 2);
}
void function(int x) {
 x = 3;
}

$./a.out
3

CS33 Intro to Computer Systems I–59 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Variables and Memory

What does
int x;

do?

• It tells the compiler:
I want x to be the name of an area of memory
that’s big enough to hold an int.

What’s memory?

CS33 Intro to Computer Systems I–60 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Industry Partners Program (IPP)

• Find and apply for jobs and internships in CS
• Learn about IPP member companies via tech talks
• Attend resumé reviews with industry professionals

• https://cs.brown.edu/about/partners

• To sign up for notifications about upcoming events:
– http://bit.ly/brownipp

• Questions? Contact Lauren_Clarke@brown.edu

http://bit.ly/brownipp

