

Many of the slides in this lecture are either from or adapted from slides provided by the authors of the textbook "Computer Systems: A Programmer's Perspective." 2nd Edition and are provided from the website of Carnegie-Mellon University, course 15-213, taught by Randy Bryant and David O'Hallaron in Fall 2010. These slides are indicated "Supplied by CMU" in the notes section of the slides.

Signed Integers

- Two's complement
$\mathrm{b}_{\mathrm{w}-1}=0 \Rightarrow$ non-negative number
value $=\sum_{i=0}^{w-2} b_{i} \cdot 2^{i}$
$b_{w-1}=1 \Rightarrow$ negative number

$$
\text { value }=(-1) \cdot 2^{w-1}+\sum_{i=0}^{w-2} b_{i} \cdot 2^{i}
$$

CS33 Intro to Computer Systems VIII-2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

There's only one zero!

Two's complement is used on pretty much all of today's computers to represent signed integers.

Note that the high-order (most-significant) bit represents $-2^{\mathrm{w}-1}$. All the other bits represent positive numbers.

Example

- $\mathbf{w}=4$

0000: 0
0001: 1
0010: 2
0011: 3
0100: 4
0101: 5
0110: 6
0111: 7

$$
\begin{array}{ll}
1000: & -8 \\
1001: & -7 \\
1010: & -6 \\
1011: & -5 \\
1100: & -4 \\
1101: & -3 \\
1110: & -2 \\
1111: & -1
\end{array}
$$

Signed Integers

- Negating two's complement

$$
\text { value }=-b_{w-1} 2^{w-1}+\sum_{i=0}^{w-2} b_{i} 2^{i}
$$

- how to compute -value?
(~value)+1

CS33 Intro to Computer Systems

To negate a two's-complement number, simply complement each of its bits, then add one to the result. We show why this works in the next slide.

Signed Integers

- Negating two's complement (continued)

$$
\begin{aligned}
& \text { value + (~value + 1) } \\
& =(\text { value + ~value })+1 \\
& =\left(2^{w-1}\right)+1 \\
& =2^{w} \\
& = \\
& \begin{array}{l|l|l|l|}
1 & 0 & 0 & 0
\end{array}
\end{aligned}
$$

CS33 Intro to Computer Systems

If we add to the two's complement representation of a w-bit number the result of adding one to its bitwise complement, we get a $\mathrm{w}+1$-bit number whose low-order w bits are zeroes and whose high-order bit is one. However, since we're constrained to only w bits, the result is a w-bit value of all zeroes, plus an overflow. If we ignore the overflow, the result is zero.

Quiz 1

- We have a computer with 4-bit words that uses two's complement to represent signed integers. What is the result of subtracting 0010 (2) from 0001 (1)?
a) 1110
b) 1001
c) 0111
d) 1111

Signed vs. Unsigned in C

- char, short, int, and long
- signed integer types
- right shift (\gg) is arithmetic
- unsigned char, unsigned short, unsigned int, unsigned long
- unsigned integer types
- right shift (>>) is logical
CS33 Intro to Computer Systems VIII-7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Why the signed integer types use the arithmetic right shift will be clear by the end of the next lecture.

Numeric Ranges

- Unsigned Values
- UMin = 0
000... 0
- UMax $=2^{w}-1$
111... 1
- Two's Complement Values

$$
\begin{aligned}
& - \text { TMin }=2^{w-1} \\
& 100 \ldots 0 \\
& -T M a x=2^{w-1}-1 \\
& 011 \ldots 1
\end{aligned}
$$

- Other Values
- Minus 1
111... 1

Values for $W=16$

	Decimal	Hex	Binary	
UMax	65535	FF FF	11111111	
11111111				
TMax	32767	$7 F$ FF	01111111	
11111111				
TMin	-32768	80 00	100000000000000	
-1	-1	FF FF	11111111	
11111111				
0	0	00 00	$00000000 \quad 00000000$	

CS33 Intro to Computer Systems
VIII-8

Supplied by CMU.

Values for Different Word Sizes

	\mathbf{W}			
	$\mathbf{8}$	$\mathbf{1 6}$	$\mathbf{3 2}$	$\mathbf{6 4}$
UMax	255	65,535	$4,294,967,295$	$18,446,744,073,709,551,615$
TMax	127	32,767	$2,147,483,647$	$9,223,372,036,854,775,807$
TMin	-128	$-32,768$	$-2,147,483,648$	$-9,223,372,036,854,775,808$

- Observations
\mid TMin $\mid=$ TMax +1
» Asymmetric range
UMax $=2$ *TMax +1
- C Programming
- \#include <limits.h>
- declares constants, e.g.,
- ULONG_MAX
- LONG_MAX
- LONG_MIN
- values platform-specific

Supplied by CMU.

Quiz 2

- What is -TMin (assuming two's complement signed integers)?
a) TMin
b) TMax
c) 0
d) 1

4-Bit Computer Arithmetic

Unsigned computer arithmetic is performed modulo 2 to the power of the computer's word size. The outer ring of the figure demonstrates arithmetic modulo 2^{4}. To see the result, for example, of adding 3 to 2 , start at 2 and go around the ring three units in the clockwise direction. If we add 5 to 14 , we start at 14 and move 5 units clockwise, to 3 . Similarly, to subtract 3 from 1, we start at one and move three units counterclockwise to 14.

What about two's-complement computer arithmetic? We know that the values encoded in a 4-bit computer word range from -8 to 7 . How do we arrange them in the ring? As shown in the second ring, it makes sense for the non-negative numbers to be in the same positions as the corresponding unsigned values. It clearly makes sense for the integer coming just before 0 to be -1 , the integer just before -1 to be -2 , etc. Thus, since we have a ring, the integer following 7 is -8 . Now we can see how arithmetic works for two's-complement numbers. Adding 3 to 2 works just as it does for unsigned numbers. Subtracting 3 from 1 results in -2 . But adding 3 to 6 results in -7 ; and adding 5 to -2 results in 3.

The innermost ring shows the bit encodings for the unsigned and two's-complement values. The point of all this is that, with only one implementation of arithmetic, we can handle both unsigned and two's-complement values. Thus, adding unsigned 5 and 9 is equivalent to adding two's-complement 5 and -7 . The result will 1110 , which, if interpreted as ansigned value is 14 , but if interpreted as a two's-complement value is -2.

Signed vs. Unsigned in C

- Constants
- by default are considered to be signed integers
- unsigned if have "U" as suffix OU, 4294967259U
- Casting
- explicit casting between signed \& unsigned

```
int tx, ty;
```

unsigned ux, uy; // "unsigned" means "unsigned int"
tx $=$ (int) ux;
$u y=$ (unsigned int) ty;

- implicit casting also occurs via assignments and function calls
tx = ux;
$u y=t y ;$

CS33 Intro to Computer Systems
VIII-12

Supplied by CMU.

Note that the kind of casting done here is what we called "intimidation" in the previous lecture: no actual conversion takes place, but the value is reinterpreted according to the cast.

Casting Surprises

- Expression evaluation
- if there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
- including comparison operations $\langle,>,==,<=,>=$
- examples for $W=32: \quad$ TMIN $=-2,147,483,648, \quad$ TMAX $=2,147,483,647$

Constant $_{1}$	Constant $_{2}$	Relation	Evaluation
0	$0 U$	$=$	unsigned
-1	0	$<$	signed
-1	$0 U$	$>$	unsigned
2147483647	$-2147483647-1$	$>$	signed
2147483647 U	$-2147483647-1$	$<$	unsigned
-1	-2	$>$	signed
(unsigned)-1	-2	$>$	unsigned
2147483647	2147483648 U	$<$	unsigned
2147483647	(int)2147483648U $>$	signed	

CS33 Intro to Computer Systems
VIII-13

THIS APPLIES TO COMPARISONS ONLY, NOT TO ASSIGNMENTS!!!!!!!!

Supplied by CMU.

Quiz 3

What is the value of (unsigned long)-1 - (long) ULONG_MAX ???
a) 0
b) -1
c) 1
d) ULONG_MAX

Sign Extension

- Task:
- given w-bit signed integer x
- convert it to $w+k$-bit integer with same value
- Rule:
- make \boldsymbol{k} copies of sign bit:
$-X^{\prime}=x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_{0}$

CS33 Intro to Computer Systems
VIII-15

Supplied by CMU.

Sign Extension Example

```
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```

	Decimal	Hex		Binary		
\mathbf{x}	15213	3B 6D	0011101101101101			
ix	15213	00 00 3B 6D	00000000	0000000000111011	01101101	
\mathbf{y}	-15213	C4 93		1100010010010011		
iy	-15213	FF FF C4 93	11111111	11111111	11000100	
10010011						

- Converting from smaller to larger integer data type - C automatically performs sign extension

Supplied by CMU.

Does it Work?

$$
\begin{aligned}
v^{v a l_{w}} & =-2^{w-1}+\sum_{i=0}^{w-2} b_{i} \cdot 2^{i} \\
v^{2} l_{w+1} & =-2^{w}+2^{w-1}+\sum_{i=0}^{w-2} b_{i} \cdot 2^{i} \\
& =-2^{w-1}+\sum_{i=0}^{w-2} b_{i} \cdot 2^{i} \\
v^{i} l_{w+2} & =-2^{w+1}+2^{w}+2^{w-1}+\sum_{i=0}^{w-2} b_{i} \cdot 2^{i} \\
& =-2^{w}+2^{w-1}+\sum_{i=0}^{w-2} b_{i} \cdot 2^{i} \\
& =-2^{w-1}+\sum_{i=0}^{w-2} b_{i} \cdot 2^{i}
\end{aligned}
$$

Sign extension clearly works for positive and zero values (where the sign bit is zero). But does it work for negative values? The first line of the slide shows the computation of the value of a w-bit item with a sign bit of one (i.e., it's negative). The next two lines show what happens if we extend this to a $\mathrm{w}+1$-bit item, extending the sign bit. What had been the sign bit becomes one of the value bits, and its contribution to the value is now positive rather than negative. But this is compensated by the new sign bit, whose contribution is a negative value, twice as large as the original sign bit. Thus, the net effect is for there to be no change in the value.

We do this again, extending to a $\mathrm{w}+2$-bit item, and again, the resulting value is the same as what we started with.

Unsigned Multiplication

- Standard multiplication function
- ignores high order w bits
- Implements modular arithmetic
$\operatorname{UMult}_{w}(u, v)=u \cdot v \bmod 2^{w}$

CS33 Intro to Computer Systems VIII-18

Supplied by CMU.

Note that to represent the true product of two arbitrary w-bit values, we need 2 w bits.

Signed Multiplication

- Standard multiplication function
- ignores high order w bits
- some of which are different from those of unsigned multiplication
- lower bits are the same
" but most-significant bit of TMULT determines sign

CS33 Intro to Computer Systems
VIII-19

Supplied by CMU.

Why is it that the "true product" is different from that of unsigned multiplication? Consider what the true product should be if the multiplier is -1 and the multiplicand is 1 . The multiplier is a w-bit word of all ones; the multiplicand is a w -bit word of all zeroes except for the least-significant bit, which is 1 . The highorder w bits of the true product should be all ones (since it's negative), but with unsigned multiplication they'd be all zeroes. However, since we're ignoring the high-order w bits, this doesn't matter.

Note that the sign of the result depends on the most-significant bit of the w-bit result, which could have no relation to the signs of the multiplier or the multiplicand.

It may be particularly important to have 64-bit results when multiplying arbitrary 32-bit signed integers.

Power-of-2 Multiply with Shift

- Operation
$-\mathrm{u} \ll \mathrm{k}$ gives $\mathrm{u} * \mathbf{2}^{k}$
- both signed and unsigned

 discard k bits: w bits $\quad \operatorname{UMult}_{w}\left(u, 2^{2}\right) \quad$| \cdots | | 1 | 0 | \cdots | $0 \mid 0$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

- Examples
$u \ll 3==u$ * 8
$\mathrm{u} \ll 5-\mathrm{u} \ll 3=\mathrm{u}$ * 24
- most machines shift and add faster than multiply
" compiler generates this code automatically

CS33 Intro to Computer Systems
VIII-20

Supplied by CMU.

Unsigned Power-of-2 Divide with Shift

- Quotient of unsigned and power of 2
-u >> kgives $\left\lfloor u / 2^{k}\right.$ 」
- uses logical shift

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
$x \gg 1$	7606.5	7606	1D B6	00011101 10110110
$x \gg 4$	950.8125	950	03 B6	00000011 10110110
$x \gg 8$	59.4257813	59	00 3B	0000000000111011

CS33 Intro to Computer Systems
VIII-21

Supplied by CMU.

Signed Power-of-2 Divide with Shift

- Quotient of signed and power of 2
- x >> k gives $\left\lfloor\mathrm{x} / 2^{k}\right\rfloor$
- uses arithmetic shift
- rounds wrong direction when $\mathrm{x}<0$

| | Division | Computed | Hex | Binary |
| :--- | ---: | ---: | ---: | ---: | ---: |
| y | -15213 | -15213 | C4 93 | 1100010010010011 |
| $\mathrm{y} \gg 1$ | -7606.5 | -7607 | E2 49 | 1110001001001001 |
| $\mathrm{y} \gg 4$ | -950.8125 | -951 | FC 49 | 1111110001001001 |
| $\mathrm{y} \gg 8$ | -59.4257813 | -60 | FF C4 | 1111111111000100 |

CS33 Intro to Computer Systems
VIII-22

Supplied by CMU.

Recall that with two's-complement, all the bits other than the most-significant represent positive values. Thus, we are shifting off (to the right) bits that should be adding a positive value to the number, but now are lost. Thus, if any of these bits are one, after shifting the resulting value will be less than it should be (i.e., more negative).

Correct Power-of-2 Divide

- Quotient of negative number by power of 2
- want $\left\lceil\mathbf{x} / 2^{k}\right\rceil$ (round toward 0)
- compute as $\left\lfloor\left(x+2^{k}-1\right) / 2^{k}\right\rfloor$
» in C: $(x+(1 \ll k)-1) \gg k$
» biases dividend toward 0
Case 1: no rounding
dividend:
dividend:

Biasing has no effect
CS33 Intro to Computer Systems VIII-23

Supplied by CMU.

If the least-significant k bits are all zeroes, then adding in the bias and shifting right by k bits eliminates any effect of adding the bias.

Correct Power-of-2 Divide (Cont.)

Case 2: rounding

dividend:

divisor:

Biasing adds 1 to final result
CS33 Intro to Computer Systems VIII-24

Supplied by CMU.

If any of the least-significant k bits are one, then adding the bias to them causes a carry of one to the bits to their left. Thus, after shifting, the number that's represented by the remaining bits is one greater (less negative) than it would have been if the bias had not been added.

Why Should I Use Unsigned?

- Don't use just because number nonnegative
- easy to make mistakes
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
- can be very subtle
\#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
- Do use when using bits to represent sets
- logical right shift, no sign extension

CS33 Intro to Computer Systems
VIII-25

Supplied by CMU.

Note that "sizeof" returns an unsigned value. (Recall that, when mixing signed and unsigned items in an expression, the result will be unsigned.)

Word Size

- (Mostly) obsolete term
- old computers had items of one size: the word size
- Now used to express the number of bits necessary to hold an address
- 16 bits (really old computers)
- 32 bits (old computers)
- 64 bits (most current computers)

Byte Ordering

- Four-byte integer
- 0x76543210
- Stored at location 0×100
- which byte is at 0×100 ?
- which byte is at $0 \times 103 ?$

Read "Gulliver's Travels" by Jonathan Swift for an explanation of the egg.

Byte Ordering (2)

Big Endian

Little Endian

CS33 Intro to Computer Systems VIII-28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Here we have a four-byte integer one. In the big-endian representation, the address of the integer is the address of the byte containing its most-significant bits (the big end), while in the little-endian representation, the address of the integer is the address of the byte containing its least-significant bits (the little end). Suppose we pass a pointer to this integer to some function. However, in a type-mismatch, the function assumes that what is passed it is a two-byte integer. On a big-endian system, it would think it was passed a zero, but on a little-endian system, it would think it was passed a one.

This is not an argument in favor of either approach, but simply an observation that behaviors could be different.

Quiz 4

```
int main() {
    long x=1;
    func((int *) &x);
    return 0;
}
void func(int *arg) {
    printf("%d\n", *arg);
}
```

What value is printed
on a big-endian 64 -bit
computer?
a) 1
b) 0
c) 2^{32}
d) $2^{32}-1$

Which Byte Ordering Do We Use?

```
int main() {
    unsigned int x = 0x03020100;
    unsigned char *xarray = (unsigned char *) &x;
    for (int i=0; i<4; i++) {
            printf("%02x", xarray[i]);
    }
    printf("\n");
    return 0;
}
    Possible results:
00010203
03020100
CS33 Intro to Computer Systems VIII-30 Copyright @ 2023 Thomas W. Doeppner. All rights reserved.
```

This code prints out the value of x , one byte at a time, starting with the byte at the lowest address (little end). On x86-based and m1-based (and presumably m2-based) computers, it will print:

00010203
which means that the address of an int is the address of the byte containing its least significant digits (little endian).

How does printf know that xarray[i] is an unsigned char (and thus one byte long) rather than an int? It turns out that printf is actually a macro (created using \#define) that creates additional arguments that give the size (using sizeof) of its second and subsequent arguments. Thus, in this example, printf calls another function, passing it "\%02x", xarray[i], and sizeof(xarray[i]). The " $\% 02 x$ " format code says to convert the argument to hexadecimal notation, print it in a field that's two characters wide, and include leading 0s.

Fractional binary numbers

- What is $\mathbf{1 0 1 1 . 1 0 1}_{2}$?

CS33 Intro to Computer Systems
VIII-31

Supplied by CMU.

Fractional Binary Numbers

- bits to right of "binary point" represent fractional powers of 2
- represents rational number: $\sum_{k=-1}^{i} b_{k} \times 2^{k}$

CS33 Intro to Computer Systems

Supplied by CMU.

Representable Numbers

- Limitation \#1
- can exactly represent only numbers of the form $n / 2^{k}$
» other rational numbers have repeating bit representations
- value representation
» $1 / 3 \quad 0.0101010101$ [01]...2
» $1 / 5 \quad 0.001100110011[0011] . . .2$
» $1 / 10 \quad 0.0001100110011[0011] . . .2$
- Limitation \#2
- just one setting of decimal point within the w bits » limited range of numbers (very small values? very large?)

CS33 Intro to Computer Systems VIII-33

Supplied by CMU.

IEEE Floating Point

- IEEE Standard 754
- established in 1985 as uniform standard for floating point arithmetic
" before that, many idiosyncratic formats
- supported on all major CPUs
- Driven by numerical concerns
- nice standards for rounding, overflow, underflow
- hard to make fast in hardware
» numerical analysts predominated over hardware designers in defining standard

CS33 Intro to Computer Systems VIII-34

Supplied by CMU.

IEEE is the Institute for Electrical and Electronics Engineers (pronounced "eye triple e").

Floating-Point Representation

- Numerical Form:

$$
(-1)^{S} M 2^{E}
$$

- sign bit s determines whether number is negative or positive
- significand M normally a fractional value in range [1.0,2.0)
- exponent E weights value by power of two
- Encoding
- MSB s is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

Supplied by CMU.

Precision options

- Single precision: $\mathbf{3 2}$ bits

s	\exp	frac	
$1 \quad 8$-bits	23-bits		

- Double precision: 64 bits

s	\exp	frac	
1	11-bits	52-bits	

- Extended precision: 80 bits (Intel only)

Supplied by CMU.

On x86 hardware, all floating-point arithmetic is done with 80 bits, then reduced to either 32 or 64 as required.

"Normalized" Values

- When: $\exp \neq 000$... 0 and $\exp \neq 111$... 1
- Exponent coded as biased value: $\mathrm{E}=\mathrm{Exp}$ - Bias - exp: unsigned value exp
- bias $=2^{k-1}-\mathbf{1}$, where k is number of exponent bits
" single precision: 127 (Exp: 1...254, E: -126...127)
»double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: $\mathrm{M}=1 . \mathrm{xxx}$...X2
- xxx...x: bits of frac
- minimum when frac=000...0 ($M=1.0$)
- maximum when frac=111... $(\mathrm{M}=2.0-\varepsilon)$
- get extra leading bit for "free"

CS33 Intro to Computer Systems VIII-37

Supplied by CMU.

Normalized Encoding Example

- Value: float $F=15213.0$;
$-15213_{10}=11101101101101_{2}$

$$
=1.1101101101101_{2} \times 2^{13}
$$

- Significand
$M \quad=\quad 1.1101101101101_{2}$
frac $=\quad \underline{11011011011010000000000} 2$
- Exponent
E = 13
bias = 127
$\exp =\quad 140=10001100_{2}$
- Result:

CS33 Intro to Computer Systems

Supplied by CMU

Denormalized Values

- Condition: $\exp =000 . . .0$
- Exponent value: $\mathrm{E}=-\mathrm{Bias}+1$ (instead of $\mathrm{E}=0-$ Bias)
- Significand coded with implied leading 0 : $\mathrm{M}=0 . \mathrm{xxx} . . \mathrm{x} 2$
- xxx...x: bits of frac
- Cases
$-\exp =000 . . .0$, frac $=000 . . .0$
» represents zero value
" note distinct values: $\mathbf{+ 0}$ and $\mathbf{- 0}$ (why?)
- exp = 000... 0 , frac $\neq 000 . . .0$
» numbers closest to 0.0
" equispaced

CS33 Intro to Computer Systems

Supplied by CMU.

Special Values

- Condition: $\exp =111 . . .1$
- Case: $\exp =111 . . .1$, frac $=000 . . .0$
- represents value ∞ (infinity)
- operation that overflows
- both positive and negative
- e.g., $1.0 / 0.0=-1.0 /-0.0=+\infty, 1.0 /-0.0=-\infty$
- Case: $\exp =111 . .1$, frac $\neq 000 . . .0$
- not-a-number (NaN)
- represents case when no numeric value can be determined
- e.g., sqrt(-1), $\infty-\infty, \infty \times 0$

CS33 Intro to Computer Systems VIII-40

Supplied by CMU.

Supplied by CMU.

Tiny Floating-Point Example

s	\exp	frac
1	4-bits	3-bits

- 8-bit Floating Point Representation
- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac
- Same general form as IEEE Format
- normalized, denormalized
- representation of $\mathbf{0}, \mathrm{NaN}$, infinity

CS33 Intro to Computer Systems VIII-42

Supplied by CMU.

Dynamic Range (Positive Only)						
		exp	frac		Value	closest to zero
		0000	000	-6	0	
		0000	001	-6	1/8*1/64 $=1 / 512$	
Denormalized numbers		0000	010	-6	$2 / 8 * 1 / 64=2 / 512$	
		0000		-6	6/8*1/64 $=6 / 512$	
		0000	111	-6	$7 / 8 * 1 / 64=7 / 512$	largest denorm
		0001	000	-6	8/8*1/64 $=8 / 512$	smallest norm
		0001	001	-6	9/8*1/64 $=9 / 512$	
		0110		-1	14/8*1/2 $=14 / 16$	
		0110	111	-1	15/8*1/2 $=15 / 16$	closest to 1 below
Normalized numbers		0111	000	0	$8 / 8 * 1=1$	
		0111	001	0	9/8*1 $=9 / 8$	closest to 1 above
		0111		0	10/8*1 $=10 / 8$	
		1110		7	14/8*128 $=224$	
		1110		7	$15 / 8 * 128=240$	largest norm
		1111	000	n/a	inf	
CS33 Intro to Computer Systems				VIII-43		

Supplied by CMU.

Distribution of Values

- 6-bit IEEE-like format
- e=3 exponent bits
- $\mathbf{f}=\mathbf{2}$ fraction bits
- bias is $\mathbf{2}^{3-1}-\mathbf{1}=3$

s	\exp	frac
1	3-bits	2-bits

- Notice how the distribution gets denser

CS33 Intro to Computer Systems

Supplied by CMU.

Distribution of Values (close-up view)

- 6-bit IEEE-like format
$-\mathrm{e}=3$ exponent bits
- $f=2$ fraction bits

s	\exp	frac
1	3-bits	2-bits

CS33 Intro to Computer Systems

Supplied by CMU.

Quiz 5

- 6-bit IEEE-like format

- $\mathbf{e}=\mathbf{3}$ exponent bits	s	exp	frac
- $\mathbf{f = 2}$ fraction bits			
- bias is $\mathbf{3}$	1	3-bits	2-bits

What number is represented by 0010 10?
a) 3
b) 1.5
c) .75
d) none of the above

Mapping Real Numbers to Float

- The real number 3 is represented as 010010
- The real number 3.5 is represented as 010011
- How is the real number 3.4 represented?

010011

- How is the real number π represented? 010010

We're assuming here the six-bit floating-point format.

Mapping Real Numbers to Float

- If R is a real number, it's mapped to the floating-point number whose value is closest to R
- What if it's midway between two values?
- rounding rules coming up soon!

Floats are Sets of Values

- If A, B, and C are successive floating-point values
- e.g., 010001, 010010, and 010011
- B represents all real numbers from midway between A and B through midway between B and C

A
B
C
CS33 Intro to Computer Systems VIII-49 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Note that we still have to discuss rounding so as to accommodate values that are equidistant from A and B or from B and C .

A special case is 0 . Positive 0 represents a range of values that are greater than or equal to 0 . Negative 0 represents a range of values that are less than or equal to zero.

Significance

- Normalized numbers
- for a particular exponent value E and an S-bit significand, the range from 2^{E} up to $2^{\mathrm{E}+1}$ is divided into 2^{s} equi-spaced floating-point values
» thus each floating-point value represents $1 / 2^{\text {s }}$ of the range of values with that exponent
" all bits of the signifcand are important
" we say that there are S significant bits - for reasonably large S , each floating-point value covers a rather small part of the range
- high accuracy
- for $\mathrm{S}=23$ (32 -bit float), accurate to one in 2^{23} (.0000119\% accuracy)

Significance

- Unnormalized numbers
- high-order zero bits of the significand aren't important
- in 8-bit floating point, 00000001 represents 2-9
» it is the only value with that exponent: 1 significant bit (either 2^{-9} or 0)
- 00000010 represents 2^{-8}

00000011 represents $1.5^{*} 2^{-8}$
» only two values with exponent -8: 2 significant bits (encoding those two values, as well as 2^{-9} and 0)

- fewer significant bits mean less accuracy
- 00000001 represents a range of values from .5*2-9 to $1.5^{*} 2^{-9}$
- 50\% accuracy
CS33 Intro to Computer Systems VIII-51 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Recall that the bias for the exponent of 8 -bit IEEE FP is 7 , thus for unnormalized numbers the actual exponent is -6 (-bias +1). The significand has an implied leading 0 , thus 00000001 represents 2^{-6} * 2^{-3}.

With 8-bit IEEE FP. the value 0000001 is interpreted as 2-9, But the number represented could be 50% or 50% more.

+/- Zero

- Only one zero for ints
- an int is a single number, not a range of numbers, thus there can be only zero
- Floating-point zero
- a range of numbers around the real 0
- it really matters which side of 0 we're on!
" a very large negative number divided by a very small negative number should be positive $-\infty /-0=+\infty$
" a very large positive number divided by a very small negative number should be negative

$$
+\infty /-0=-\infty
$$

```
CS33 Intro to Computer Systems VIII-52 Copyright © 2023 Thomas W. Doeppner. All rights reserved.
```

It's important to remember that a floating-point value is not a single number, but a range of numbers.

