CS 33

Data Representation (Part 2)

Signed Integers

- Two's complement
$b_{w-1}=0 \Rightarrow$ non-negative number

$$
\left.\begin{array}{c}
\text { value }=\sum_{i=0}^{w-2} b_{i} \cdot 2^{i} \\
\mathbf{b}_{\mathrm{w}-1}=1 \Rightarrow \text { negative number } \\
\text { value }=(-1) \cdot 2^{w-1}+\sum_{i=0}^{w-2} b_{i} \cdot 2^{i}
\end{array}\right] \text { one zero! } \quad \text { }
$$

Example

- $\mathbf{w}=4$

0000: 0
0001: 1
0010: 2
0011: 3
0100: 4
0101: 5
0110: 6
0111: 7

$$
\begin{array}{ll}
1000: & -8 \\
1001: & -7 \\
1010: & -6 \\
1011: & -5 \\
1100: & -4 \\
1101: & -3 \\
1110: & -2 \\
1111: & -1
\end{array}
$$

Signed Integers

- Negating two's complement

$$
\text { value }=-b_{w-1} 2^{w-1}+\sum_{i=0}^{w-2} b_{i} 2^{i}
$$

- how to compute -value?
(~value)+1

Signed Integers

- Negating two's complement (continued)

$$
\begin{aligned}
& \text { value + (~value + 1) } \\
& =(\text { value + ~value })+1 \\
& =\left(2^{w}-1\right)+1 \\
& =2^{w} \\
& =\quad \begin{array}{|l|l|l|l|l|l|}
\hline 1 & 0 & 0 & 0 & \ldots & 0
\end{array} \\
& \begin{array}{|ll}
\\
= & \\
\hline
\end{array}
\end{aligned}
$$

Quiz 1

- We have a computer with 4-bit words that uses two's complement to represent signed integers. What is the result of subtracting 0010 (2) from 0001 (1)?
a) 1110
b) 1001
c) 0111
d) 1111

Signed vs. Unsigned in C

- char, short, int, and long
- signed integer types
- right shift (\gg) is arithmetic
- unsigned char, unsigned short, unsigned int, unsigned long
- unsigned integer types
- right shift (>>) is logical

Numeric Ranges

- Unsigned Values

$$
\begin{array}{ll}
- \text { UMin } & =0 \\
000 \ldots 0 \\
- \text { UMax } & =2^{w}-1 \\
111 \ldots 1
\end{array}
$$

- Two's Complement Values

$$
- \text { TMin } \quad=\quad-2^{w-1}
$$

100... 0

- TMax $=\quad 2^{w-1}-1$
011... 1
- Other Values
- Minus 1
111... 1

Values for $\boldsymbol{W}=16$

	Decimal	Hex	Binary	
UMax	65535	FF FF	111111111111111	
TMax	32767	$7 F ~ F F$	0111111111111111	
TMin	-32768	80 00	1000000000000000	
-1	-1	FF FF	1111111111111111	
0	0	00 00	0000000000000000	

Values for Different Word Sizes

	\mathbf{W}			
	$\mathbf{8}$	$\mathbf{1 6}$	$\mathbf{3 2}$	$\mathbf{6 4}$
UMax	255	65,535	$4,294,967,295$	$18,446,744,073,709,551,615$
TMax	127	32,767	$2,147,483,647$	$9,223,372,036,854,775,807$
TMin	-128	$-32,768$	$-2,147,483,648$	$-9,223,372,036,854,775,808$

- Observations
\mid TMin $\mid=$ TMax +1
» Asymmetric range
UMax $=2$ *TMax +1
- C Programming
- \#include <limits.h>
- declares constants, e.g.,
- ULONG_MAX
- LONG_MAX
- LONG_MIN
- values platform-specific

Quiz 2

- What is -TMin (assuming two's complement signed integers)?
a) TMin
b) TMax
c) 0
d) 1

4-Bit Computer Arithmetic

Signed vs. Unsigned in C

- Constants
- by default are considered to be signed integers
- unsigned if have "U" as suffix

$$
\text { OU, } 4294967259 \mathrm{U}
$$

- Casting
- explicit casting between signed \& unsigned

```
int tx, ty;
unsigned ux, uy; // "unsigned" means "unsigned int"
tx = (int) ux;
uy = (unsigned int) ty;
```

- implicit casting also occurs via assignments and function calls

```
tx = ux;
uy = ty;
```


Casting Surprises

- Expression evaluation
- if there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
- including comparison operations $<,>,==,<=,>=$
- examples for $W=32$: \quad TMIN $=-2,147,483,648, \quad$ TMAX $=2,147,483,647$

Constant $_{1}$	Constant $_{2}$	Relation	Evaluation 0
0 OU	unsigned		
-1	0	$<$	signed
-1	$0 U$	$>$	unsigned
2147483647	$-2147483647-1$	$>$	signed
2147483647 U	$-2147483647-1$	$<$	unsigned
-1	-2	$>$	signed
(unsigned)-1	-2	$>$	unsigned
2147483647	2147483648 U	$<$	unsigned
2147483647	(int)2147483648U $>$	signed	

Quiz 3

What is the value of

(unsigned long) -1 - (long) ULONG_MAX
???
a) 0
b) -1
c) 1
d) ULONG_MAX

Sign Extension

- Task:
- given w-bit signed integer x
- convert it to $w+k$-bit integer with same value
- Rule:
- make k copies of sign bit:

Sign Extension Example

```
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```

	Decimal	Hex		Binary		
\mathbf{x}	15213	3B 6D		00111011	01101101	
ix	15213	00 00 3B 6D	00000000	000000000111011	01101101	
\mathbf{y}	-15213	C4 93		1100010010010011		
iy	-15213	FF FF C4 93	11111111	11111111	11000100	

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Does it Work?

$$
\begin{aligned}
v a l_{w} & =-2^{w-1}+\sum_{i=0}^{w-2} b_{i} \cdot 2^{i} \\
v a l_{w+1} & =-2^{w}+2^{w-1}+\sum_{i=0}^{w-2} b_{i} \cdot 2^{i} \\
& =-2^{w-1}+\sum_{i=0}^{w-2} b_{i} \cdot 2^{i} \\
v a l_{w+2} & =-2^{w+1}+2^{w}+2^{w-1}+\sum_{i=0}^{w-2} b_{i} \cdot 2^{i} \\
& =-2^{w}+2^{w-1}+\sum_{i=0}^{w-2} b_{i} \cdot 2^{i} \\
& =-2^{w-1}+\sum_{i=0}^{w-2} b_{i} \cdot 2^{i}
\end{aligned}
$$

Unsigned Multiplication

Operands: w bits

True Product: 2*w bits
Discard w bits: w bits

- Standard multiplication function
- ignores high order w bits
- Implements modular arithmetic

$$
\text { UMult }_{w}(u, v)=u \cdot v \bmod 2^{w}
$$

Signed Multiplication

Operands: w bits

- Standard multiplication function
- ignores high order w bits
- some of which are different from those of unsigned multiplication
- lower bits are the same
» but most-significant bit of TMULT determines sign

Power-of-2 Multiply with Shift

- Operation
$-\mathrm{u} \ll \mathrm{k}$ gives $\mathrm{u} * \mathbf{2}^{k}$
- both signed and unsigned
operands: w bits

- Examples

$$
\begin{aligned}
& \mathrm{u} \ll 3==\quad \mathrm{u} * 8 \\
& \mathrm{u} \ll 5-\mathrm{u} \ll 3==\mathrm{u} * 24
\end{aligned}
$$

- most machines shift and add faster than multiply
» compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

- Quotient of unsigned and power of 2
$-u \gg k$ gives $\left\lfloor u / 2^{k}\right\rfloor$
- uses logical shift

	Division	Computed	Hex	Binary	
\mathbf{x}	15213	15213	3B 6D	0011101101101101	
$\mathbf{x ~ \gg ~ 1 ~}$	7606.5	7606	1D B6	0001110110110110	
$x \gg 4$	950.8125	950	03 B6	0000001110110110	
$x>88$	59.4257813	59	00 3B	0000000000111011	

Signed Power-of-2 Divide with Shift

- Quotient of signed and power of 2
$-x \gg k$ gives $\left\lfloor x / 2^{k}\right\rfloor$
- uses arithmetic shift
- rounds wrong direction when $\mathrm{x}<0$
operands:

result: RoundDown $\left(x / 2^{k}\right)$| | $\bullet \bullet$ | | | | $\bullet \bullet \bullet$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

| | Division | Computed | Hex | Binary |
| :--- | ---: | ---: | ---: | ---: | ---: |
| y | -15213 | -15213 | C4 93 | 1100010010010011 |
| $\mathrm{y} \gg 1$ | -7606.5 | -7607 | E2 49 | 1110001001001001 |
| $\mathrm{y} \gg 4$ | -950.8125 | -951 | FC 49 | 1111110001001001 |
| $\mathrm{y} \gg 8$ | -59.4257813 | -60 | FF C4 | 1111111111000100 |

Correct Power-of-2 Divide

- Quotient of negative number by power of 2
- want 「x/2 $\left.2^{k}\right\rceil$ (round toward 0)
- compute as $\left\lfloor\left(x+2^{k}-1\right) / 2^{k}\right\rfloor$
» in C: ($x+(1 \ll k)-1) \gg k$
» biases dividend toward 0

Case 1: no rounding

dividend:

Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: rounding
dividend:

	11, k ${ }^{k}$
incremented by 1	

binary point
divisor:

incremented by 1
Biasing adds 1 to final result

Why Should I Use Unsigned?

- Don't use just because number nonnegative
- easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
    a[i] += a[i+1];
```

- can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
```

- Do use when using bits to represent sets
- logical right shift, no sign extension

Word Size

- (Mostly) obsolete term
- old computers had items of one size: the word size
- Now used to express the number of bits necessary to hold an address
- 16 bits (really old computers)
- 32 bits (old computers)
- 64 bits (most current computers)

Byte Ordering

- Four-byte integer
- 0x76543210
- Stored at location 0×100
- which byte is at $0 \times 100 ?$
- which byte is at $0 \times 103 ?$

Byte Ordering (2)

Big Endian

Quiz 4

```
int main() {
    long x=1;
    func((int *) &x);
    return 0;
}
void func(int *arg) {
    printf("%d\n", *arg);
}
```


Which Byte Ordering Do We Use?

```
int main() {
    unsigned int x = 0x03020100;
    unsigned char *xarray = (unsigned char *) &x;
    for (int i=0; i<4; i++) {
                        printf("%02x", xarray[i]);
    }
    printf("\n");
    return 0;
}
```


Possible results:

```
00010203
03020100
```


Fractional binary numbers

- What is $\mathbf{1 0 1 1 . 1 0 1}_{2}$?

Fractional Binary Numbers

- bits to right of "binary point" represent fractional powers of 2
- represents rational number: $\quad \sum^{i} b_{k} \times 2^{k}$

Representable Numbers

- Limitation \#1
- can exactly represent only numbers of the form $n / 2^{k}$
» other rational numbers have repeating bit representations
- value representation
» $1 / 30.0101010101[01] \ldots 2$
» $1 / 50.001100110011[0011] . . .2$
» $1 / 10 \quad 0.0001100110011[0011] . . .2$
- Limitation \#2
- just one setting of decimal point within the w bits
» limited range of numbers (very small values? very large?)

IEEE Floating Point

- IEEE Standard 754
- established in 1985 as uniform standard for floating point arithmetic
» before that, many idiosyncratic formats
- supported on all major CPUs
- Driven by numerical concerns
- nice standards for rounding, overflow, underflow
- hard to make fast in hardware
» numerical analysts predominated over hardware designers in defining standard

Floating-Point Representation

- Numerical Form:
$(-1)^{\mathrm{S}} \mathrm{M} 2^{\mathrm{E}}$
- sign bit s determines whether number is negative or positive
- significand M normally a fractional value in range [1.0,2.0)
- exponent E weights value by power of two
- Encoding
- MSB s is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

s	\exp	frac

Precision options

- Single precision: 32 bits

s	\exp	frac	
1	8-bits	23-bits	

- Double precision: 64 bits

s	\exp	frac	
1	11-bits	52-bits	

- Extended precision: 80 bits (Intel only)

s	exp	frac	
$1 \quad$ 15-bits		64-bits	

"Normalized" Values

- When: $\exp \neq 000 \ldots 0$ and $\exp \neq 111 . . .1$
- Exponent coded as biased value: $\mathrm{E}=\mathrm{Exp}$ - Bias
- exp: unsigned value exp
- bias $=2^{\mathrm{k}-1}-1$, where k is number of exponent bits
» single precision: 127 (Exp: 1...254, E: -126...127)
» double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: $\mathrm{M}=1 . \mathrm{xxx}$...x2
- XXX...x: bits of frac
- minimum when frac=000... $0(\mathrm{M}=1.0)$
- maximum when frac=111... $1(M=2.0-\varepsilon)$
- get extra leading bit for "free"

Normalized Encoding Example

- Value: float $F=15213.0$;
$-15213_{10}=11101101101101_{2}$

$$
=1.1101101101101_{2} \times 2^{13}
$$

- Significand

$M=$	$1 . \underline{1101101101101_{2}}$
frac $=$	$\underline{11011011011010000000000_{2}}$

- Exponent

E	$=$	13
bias	$=$	127
\exp	$=$	$140=10001100_{2}$

- Result:

Denormalized Values

- Condition: $\exp =000 . . .0$
- Exponent value: $\mathrm{E}=-$ Bias +1 (instead of $\mathrm{E}=0$ - Bias)
- Significand coded with implied leading 0 : M = 0.xxx.... \mathbf{x}_{2}
- xxx...x: bits of frac
- Cases
$-\exp =000$... 0 , frac $=000 . . .0$
» represents zero value
» note distinct values: +0 and -0 (why?)
- exp $=000$... 0, frac $\neq 000 . . .0$
» numbers closest to 0.0
» equispaced

Special Values

- Condition: $\exp =111 . . .1$
- Case: $\exp =111 . . .1$, frac $=000 . . .0$
- represents value ∞ (infinity)
- operation that overflows
- both positive and negative
- e.g., $1.0 / 0.0=-1.0 /-0.0=+\infty, 1.0 /-0.0=-\infty$
- Case: exp = 111...1, frac $\neq 000 . . .0$
- not-a-number (NaN)
- represents case when no numeric value can be determined
- e.g., sqrt(-1), $\infty-\infty, \infty \times 0$

Visualization: Floating-Point Encodings

Tiny Floating-Point Example

s	\exp	frac
1	4-bits	3-bits

- 8-bit Floating Point Representation
- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac
- Same general form as IEEE Format
- normalized, denormalized
- representation of $\mathbf{0}, \mathrm{NaN}$, infinity

Dynamic Range (Positive Only)

	s exp frac	E	Value		
	0	0000	000	-6	0
	0	0000	001	-6	$1 / 8 * 1 / 64=1 / 512$
Denormalized	0	0000	010	-6	$2 / 8 * 1 / 64=2 / 512$

Distribution of Values

- 6-bit IEEE-like format
- e = 3 exponent bits
- $\mathbf{f}=\mathbf{2}$ fraction bits
- bias is $\mathbf{2}^{3-1}-1=3$

- Notice how the distribution gets denser toward zero.

8 values

Distribution of Values (close-up view)

- 6-bit IEEE-like format
- e = 3 exponent bits
- $f=2$ fraction bits
- bias is 3

Quiz 5

- 6-bit IEEE-like format
- e = 3 exponent bits
- $f=\mathbf{2}$ fraction bits
- bias is 3

s	\exp	frac
1	3-bits	2-bits

What number is represented by $001010 ?$
a) 3
b) 1.5
c) .75
d) none of the above

Mapping Real Numbers to Float

- The real number 3 is represented as 010010
- The real number 3.5 is represented as 010011
- How is the real number 3.4 represented?

010011

- How is the real number π represented?

010010

Mapping Real Numbers to Float

- If R is a real number, it's mapped to the floating-point number whose value is closest to \mathbf{R}
- What if it's midway between two values?
- rounding rules coming up soon!

Floats are Sets of Values

- If A, B, and C are successive floating-point values
- e.g., 010001, 010010, and 010011
- B represents all real numbers from midway between A and B through midway between B and C

Significance

- Normalized numbers
- for a particular exponent value E and an S-bit significand, the range from 2^{E} up to $2^{\mathrm{E}+1}$ is divided into 2^{s} equi-spaced floating-point values
» thus each floating-point value represents $1 / 2^{S}$ of the range of values with that exponent
" all bits of the signifcand are important
» we say that there are S significant bits - for reasonably large S, each floating-point value covers a rather small part of the range
- high accuracy
- for $S=23$ (32-bit float), accurate to one in 2^{23} (.0000119\% accuracy)

Significance

- Unnormalized numbers
- high-order zero bits of the significand aren't important
- in 8-bit floating point, 00000001 represents 2^{-9}
» it is the only value with that exponent: 1 significant bit (either 2^{-9} or 0)
- 00000010 represents 2^{-8}

00000011 represents $1.5^{*} 2^{-8}$
» only two values with exponent -8: 2 significant bits (encoding those two values, as well as 2^{-9} and 0)

- fewer significant bits mean less accuracy
-00000001 represents a range of values from .5*2-9 to $1.5^{*} 2^{-9}$
- 50\% accuracy

+/- Zero

- Only one zero for ints
- an int is a single number, not a range of numbers, thus there can be only zero
- Floating-point zero
- a range of numbers around the real 0
- it really matters which side of 0 we're on!
» a very large negative number divided by a very small negative number should be positive

$$
-\infty /-0=+\infty
$$

» a very large positive number divided by a very small negative number should be negative

$$
+\infty /-0=-\infty
$$

