
CS33 Intro to Computer Systems VIII–1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Data Representation (Part 2)

CS33 Intro to Computer Systems VIII–2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signed Integers

• Two’s complement
bw-1 = 0 Þ non-negative number

bw-1 = 1 Þ negative number

value =

value =

one zero!

CS33 Intro to Computer Systems VIII–3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Example

• w = 4
0000: 0
0001: 1
0010: 2

0011: 3
0100: 4
0101: 5
0110: 6
0111: 7

1000: -8
1001: -7

1010: -6
1011: -5
1100: -4
1101: -3
1110: -2
1111: -1

CS33 Intro to Computer Systems VIII–4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signed Integers

• Negating two’s complement

– how to compute –value?
(~value)+1

value = −bw−12
w−1+ bi2

i

i=0

w−2

∑

CS33 Intro to Computer Systems VIII–5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signed Integers

• Negating two’s complement (continued)

 value + (~value + 1)

 = (value + ~value) + 1

 = (2w−1) + 1

 = 2w

0 0 0 … 0 0 0

w

1=

CS33 Intro to Computer Systems VIII–6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1

• We have a computer with 4-bit words that
uses two’s complement to represent signed
integers. What is the result of subtracting
0010 (2) from 0001 (1)?
a) 1110
b) 1001
c) 0111
d) 1111

CS33 Intro to Computer Systems VIII–7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signed vs. Unsigned in C

• char, short, int, and long
– signed integer types
– right shift (>>) is arithmetic

• unsigned char, unsigned short, unsigned int,
unsigned long

– unsigned integer types
– right shift (>>) is logical

CS33 Intro to Computer Systems VIII–8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Numeric Ranges
• Unsigned Values

– UMin = 0
000…0

– UMax = 2w – 1
111…1

• Two’s Complement Values
– TMin = –2w–1

100…0
– TMax = 2w–1 – 1

011…1
• Other Values

– Minus 1
111…1

 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111
TMax 32767 7F FF 01111111 11111111
TMin -32768 80 00 10000000 00000000
-1 -1 FF FF 11111111 11111111
0 0 00 00 00000000 00000000

Values for W = 16

CS33 Intro to Computer Systems VIII–9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Values for Different Word Sizes

• Observations
|TMin | = TMax + 1

» Asymmetric range
UMax = 2 * TMax + 1

 W
 8 16 32 64

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

• C Programming
• #include <limits.h>
• declares constants, e.g.,

• ULONG_MAX
• LONG_MAX
• LONG_MIN

• values platform-specific

CS33 Intro to Computer Systems VIII–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2

• What is –TMin (assuming two’s complement
signed integers)?
a) TMin
b) TMax
c) 0
d) 1

CS33 Intro to Computer Systems VIII–11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

4-Bit Computer Arithmetic
0

0 1
1

22

33
44

5
5

6
6

7
7

8
-89

-7

10
-6

11 -5
12 -4

13 -3

14
-2

15
-1

0000 0001

0010
0011

0100
0101

0110
011110001001

10
10

10
11

11
00

11
01

111
0

1111

CS33 Intro to Computer Systems VIII–12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signed vs. Unsigned in C
• Constants

– by default are considered to be signed integers
– unsigned if have “U” as suffix

0U, 4294967259U

• Casting
– explicit casting between signed & unsigned

int tx, ty;
unsigned ux, uy; // “unsigned” means “unsigned int”
tx = (int) ux;
uy = (unsigned int) ty;

– implicit casting also occurs via assignments and function calls
tx = ux;

uy = ty;

CS33 Intro to Computer Systems VIII–13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

• Expression evaluation
– if there is a mix of unsigned and signed in single expression,

signed values implicitly cast to unsigned
– including comparison operations <, >, ==, <=, >=
– examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

Casting Surprises

Constant1 Constant2 Relation Evaluation
0 0U == unsigned
-1 0 < signed
-1 0U > unsigned
2147483647 -2147483647-1 > signed
2147483647U -2147483647-1 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int)2147483648U > signed

CS33 Intro to Computer Systems VIII–14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 3

What is the value of
 (unsigned long)-1 - (long)ULONG_MAX
???

a) 0
b) -1
c) 1
d) ULONG_MAX

CS33 Intro to Computer Systems VIII–15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Sign Extension
• Task:

– given w-bit signed integer x
– convert it to w+k-bit integer with same value

• Rule:
– make k copies of sign bit:
– X ¢ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB • • •X

X ¢ • • • • • •

• • •

w

wk

CS33 Intro to Computer Systems VIII–16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Sign Extension Example

• Converting from smaller to larger integer data type
– C automatically performs sign extension

short int x = 15213;
 int ix = (int) x;
 short int y = -15213;
 int iy = (int) y;

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

CS33 Intro to Computer Systems VIII–17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Does it Work?
valw = − 2w−1 + bi ⋅2

i

i=0

w−2
∑

valw+1 = − 2w + 2w−1 + bi ⋅2
i

i=0

w−2
∑

= − 2w−1 + bi ⋅2
i

i=0

w−2
∑

valw+2 = − 2w+1 + 2w + 2w−1 + bi ⋅2
i

i=0

w−2
∑

= − 2w + 2w−1 + bi ⋅2
i

i=0

w−2
∑

= − 2w−1 + bi ⋅2
i

i=0

w−2
∑

CS33 Intro to Computer Systems VIII–18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Unsigned Multiplication

• Standard multiplication function
– ignores high order w bits

• Implements modular arithmetic
UMultw(u , v) = u · v mod 2w

• • •
• • •

u
v*

• • •u * v
• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)
• • •

CS33 Intro to Computer Systems VIII–19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signed Multiplication

• Standard multiplication function
– ignores high order w bits
– some of which are different from those of

unsigned multiplication
– lower bits are the same

» but most-significant bit of TMULT
determines sign

• • •
• • •

u
v*

• • •u * v
• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
TMultw(u , v)
• • •

CS33 Intro to Computer Systems VIII–20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Power-of-2 Multiply with Shift
• Operation

– u << k gives u * 2k

– both signed and unsigned

• Examples
u << 3 == u * 8

u << 5 - u << 3 == u * 24

– most machines shift and add faster than multiply
» compiler generates this code automatically

• • •
0 0 1 0 0 0•••

u
2k*

u * 2ktrue product: w+k bits

operands: w bits

discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••

CS33 Intro to Computer Systems VIII–21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Unsigned Power-of-2 Divide with Shift
• Quotient of unsigned and power of 2

– u >> k gives ë u / 2k û
– uses logical shift

 Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101
x >> 1 7606.5 7606 1D B6 00011101 10110110
x >> 4 950.8125 950 03 B6 00000011 10110110
x >> 8 59.4257813 59 00 3B 00000000 00111011

0 0 1 0 0 0•••
u
2k/

u / 2kdivision:

operands:
•••

k
••• •••

•••0 0 0••• •••

ë u / 2k û •••result:

.

binary point

0

0 0 0•••0

CS33 Intro to Computer Systems VIII–22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signed Power-of-2 Divide with Shift
• Quotient of signed and power of 2

– x >> k gives ë x / 2k û
– uses arithmetic shift
– rounds wrong direction when x < 0

0 0 1 0 0 0•••
x
2k/

x / 2kdivision:

operands:
•••

k
••• •••

•••0 ••• •••
RoundDown(x / 2k) •••result:

.

binary point

0 •••

 Division Computed Hex Binary
y -15213 -15213 C4 93 11000100 10010011
y >> 1 -7606.5 -7607 E2 49 11100010 01001001
y >> 4 -950.8125 -951 FC 49 11111100 01001001
y >> 8 -59.4257813 -60 FF C4 11111111 11000100

CS33 Intro to Computer Systems VIII–23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Correct Power-of-2 Divide
• Quotient of negative number by power of 2

– want é x / 2k ù (round toward 0)
– compute as ë (x+2k-1)/ 2k û

» in C: (x + (1<<k)-1) >> k
» biases dividend toward 0

Case 1: no rounding

divisor:

dividend:

0 0 1 0 0 0•••

x

2k/
é u / 2k ù

•••

k
1 ••• 0 0 0•••

1 •••0 1 1••• .

binary point

1

0 0 0 1 1 1•••+2k –1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing has no effect

CS33 Intro to Computer Systems VIII–24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Correct Power-of-2 Divide (Cont.)

divisor:

dividend:

Case 2: rounding

0 0 1 0 0 0•••

x

2k/
é x / 2k ù

•••

k
1 ••• •••

1 •••0 1 1••• .

binary point

1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing adds 1 to final result

•••

incremented by 1

incremented by 1

CS33 Intro to Computer Systems VIII–25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Why Should I Use Unsigned?
• Don’t use just because number nonnegative

– easy to make mistakes
unsigned i;
for (i = cnt-2; i >= 0; i--)
 a[i] += a[i+1];

– can be very subtle
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
 . . .

• Do use when using bits to represent sets
– logical right shift, no sign extension

CS33 Intro to Computer Systems VIII–26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Word Size

• (Mostly) obsolete term
– old computers had items of one size: the word size

• Now used to express the number of bits
necessary to hold an address

– 16 bits (really old computers)
– 32 bits (old computers)
– 64 bits (most current computers)

CS33 Intro to Computer Systems VIII–27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Byte Ordering

• Four-byte integer
– 0x76543210

• Stored at location 0x100
– which byte is at 0x100?
– which byte is at 0x103?

76
0x100

54
0x101

32
0x102

10
0x103

10
0x100

32
0x101

54
0x102

76
0x103?

Big-endian

Little-endian

CS33 Intro to Computer Systems VIII–28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Byte Ordering (2)

00 00 00 01

Big Endian

Little Endian

CS33 Intro to Computer Systems VIII–29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 4

int main() {
 long x=1;
 func((int *)&x);
 return 0;

}

void func(int *arg) {
 printf("%d\n", *arg);

}

What value is printed
on a big-endian 64-bit
computer?

a) 1
b) 0
c) 232

d) 232-1

CS33 Intro to Computer Systems VIII–30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Which Byte Ordering Do We Use?

int main() {
 unsigned int x = 0x03020100;

 unsigned char *xarray = (unsigned char *)&x;
 for (int i=0; i<4; i++) {
 printf("%02x", xarray[i]);

 }

 printf("\n");

 return 0;
}

Possible results:

00010203
03020100

CS33 Intro to Computer Systems VIII–31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Fractional binary numbers

• What is 1011.1012?

CS33 Intro to Computer Systems VIII–32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

2i

2i-1

4
2
1

1/2
1/4
1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

Fractional Binary Numbers

• Representation
– bits to right of “binary point” represent fractional powers of 2
– represents rational number:

• • •

CS33 Intro to Computer Systems VIII–33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Representable Numbers

• Limitation #1
– can exactly represent only numbers of the form n/2k

» other rational numbers have repeating bit
representations

– value representation
» 1/3 0.0101010101[01]…2
» 1/5 0.001100110011[0011]…2
» 1/10 0.0001100110011[0011]…2

• Limitation #2
– just one setting of decimal point within the w bits

» limited range of numbers (very small values? very
large?)

CS33 Intro to Computer Systems VIII–34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

IEEE Floating Point

• IEEE Standard 754
– established in 1985 as uniform standard for floating

point arithmetic
» before that, many idiosyncratic formats

– supported on all major CPUs

• Driven by numerical concerns
– nice standards for rounding, overflow, underflow
– hard to make fast in hardware

» numerical analysts predominated over hardware
designers in defining standard

CS33 Intro to Computer Systems VIII–35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

• Numerical Form:
 (–1)s M 2E

– sign bit s determines whether number is negative or
positive

– significand M normally a fractional value in range
[1.0,2.0)

– exponent E weights value by power of two
• Encoding

– MSB s is sign bit s
– exp field encodes E (but is not equal to E)
– frac field encodes M (but is not equal to M)

Floating-Point Representation

s exp frac

CS33 Intro to Computer Systems VIII–36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Precision options

• Single precision: 32 bits

• Double precision: 64 bits

• Extended precision: 80 bits (Intel only)

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 64-bits

CS33 Intro to Computer Systems VIII–37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

“Normalized” Values

• When: exp ≠ 000…0 and exp ≠ 111…1

• Exponent coded as biased value: E = Exp – Bias
– exp: unsigned value exp
– bias = 2k-1 - 1, where k is number of exponent bits

» single precision: 127 (Exp: 1…254, E: -126…127)
» double precision: 1023 (Exp: 1…2046, E: -1022…1023)

• Significand coded with implied leading 1: M = 1.xxx…x2
– xxx…x: bits of frac
– minimum when frac=000…0 (M = 1.0)
– maximum when frac=111…1 (M = 2.0 – ε)
– get extra leading bit for “free”

CS33 Intro to Computer Systems VIII–38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Normalized Encoding Example
• Value: float F = 15213.0;

– 1521310 = 111011011011012

 = 1.11011011011012 x 213

• Significand
M = 1.11011011011012
frac = 110110110110100000000002

• Exponent
E = 13
bias = 127
exp = 140 = 100011002

• Result:

0 10001100 11011011011010000000000
s exp frac

CS33 Intro to Computer Systems VIII–39 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Denormalized Values

• Condition: exp = 000…0
• Exponent value: E = –Bias + 1 (instead of E = 0 – Bias)
• Significand coded with implied leading 0:

M = 0.xxx…x2
– xxx…x: bits of frac

• Cases
– exp = 000…0, frac = 000…0

» represents zero value
» note distinct values: +0 and –0 (why?)

– exp = 000…0, frac ≠ 000…0
» numbers closest to 0.0
» equispaced

CS33 Intro to Computer Systems VIII–40 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Special Values

• Condition: exp = 111…1

• Case: exp = 111…1, frac = 000…0
– represents value ¥ (infinity)
– operation that overflows
– both positive and negative
– e.g., 1.0/0.0 = −1.0/−0.0 = +¥, 1.0/−0.0 = −¥

• Case: exp = 111…1, frac ≠ 000…0
– not-a-number (NaN)
– represents case when no numeric value can be determined
– e.g., sqrt(–1), ¥ − ¥, ¥ ´ 0

CS33 Intro to Computer Systems VIII–41 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Visualization: Floating-Point Encodings

+¥−¥

−0

+Denorm +Normalized−Denorm−Normalized

+0NaN NaN

CS33 Intro to Computer Systems VIII–42 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Tiny Floating-Point Example

• 8-bit Floating Point Representation
– the sign bit is in the most significant bit
– the next four bits are the exponent, with a bias of 7
– the last three bits are the frac

• Same general form as IEEE Format
– normalized, denormalized
– representation of 0, NaN, infinity

s exp frac

1 4-bits 3-bits

CS33 Intro to Computer Systems VIII–43 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Dynamic Range (Positive Only)

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

s exp frac E Value

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512
…
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001 -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1 = 1
0 0111 001 0 9/8*1 = 9/8
0 0111 010 0 10/8*1 = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf

CS33 Intro to Computer Systems VIII–44 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Distribution of Values

• 6-bit IEEE-like format
– e = 3 exponent bits
– f = 2 fraction bits
– bias is 23-1-1 = 3

• Notice how the distribution gets denser
toward zero. 8 values

s exp frac

1 3-bits 2-bits

CS33 Intro to Computer Systems VIII–45 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Distribution of Values (close-up view)

• 6-bit IEEE-like format
– e = 3 exponent bits
– f = 2 fraction bits
– bias is 3

s exp frac

1 3-bits 2-bits

-1 -0.5 0 0.5 1
Denormalized Normalized Infinity

CS33 Intro to Computer Systems VIII–46 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 5

• 6-bit IEEE-like format
– e = 3 exponent bits
– f = 2 fraction bits
– bias is 3

s exp frac

1 3-bits 2-bits

What number is represented by 0 010 10?
a) 3
b) 1.5
c) .75
d) none of the above

CS33 Intro to Computer Systems VIII–47 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Mapping Real Numbers to Float

• The real number 3 is represented as
0 100 10

• The real number 3.5 is represented as
0 100 11

• How is the real number 3.4 represented?
0 100 11

• How is the real number 𝛑 represented?
0 100 10

010000 010001 010010 010011 010100

3 3.5
3.4𝛑

CS33 Intro to Computer Systems VIII–48 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Mapping Real Numbers to Float

• If R is a real number, itʼs mapped to the
floating-point number whose value is closest
to R

• What if itʼs midway between two values?
– rounding rules coming up soon!

CS33 Intro to Computer Systems VIII–49 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Floats are Sets of Values

• If A, B, and C are successive floating-point
values
– e.g., 010001, 010010, and 010011

• B represents all real numbers from midway
between A and B through midway between B
and C

A B C

Real numbers
represented by B

CS33 Intro to Computer Systems VIII–50 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Significance

• Normalized numbers
– for a particular exponent value E and an S-bit

significand, the range from 2E up to 2E+1 is divided
into 2S equi-spaced floating-point values

» thus each floating-point value represents 1/2S of the
range of values with that exponent

» all bits of the signifcand are important
» we say that there are S significant bits – for

reasonably large S, each floating-point value covers
a rather small part of the range

• high accuracy
• for S=23 (32-bit float), accurate to one in 223

(.0000119% accuracy)

CS33 Intro to Computer Systems VIII–51 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Significance

• Unnormalized numbers
– high-order zero bits of the significand arenʼt

important
– in 8-bit floating point, 0 0000 001 represents 2-9

» it is the only value with that exponent: 1 significant
bit (either 2-9 or 0)

– 0 0000 010 represents 2-8
0 0000 011 represents 1.5*2-8

» only two values with exponent -8: 2 significant bits
(encoding those two values, as well as 2-9 and 0)

– fewer significant bits mean less accuracy
– 0 0000 001 represents a range of values from .5*2-9

to 1.5*2-9
– 50% accuracy

CS33 Intro to Computer Systems VIII–52 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

+/− Zero

• Only one zero for ints
– an int is a single number, not a range of numbers,

thus there can be only zero
• Floating-point zero

– a range of numbers around the real 0
– it really matters which side of 0 we’re on!

» a very large negative number divided by a very small
negative number should be positive

−¥/−0 = +¥
» a very large positive number divided by a very small

negative number should be negative

+¥ /−0 = −¥

