CS 33

Data Representation (Part 3)

Byte Ordering

- Four-byte integer
- 0x76543210
- Stored at location 0×100
- which byte is at $0 \times 100 ?$
- which byte is at $0 \times 103 ?$

Byte Ordering (2)

Big Endian

Quiz 1

```
int main() {
    long x=1;
    func((int *) &x);
    return 0;
}
void func(int *arg) {
    printf("%d\n", *arg);
}
```


Which Byte Ordering Do We Use?

```
int main() {
    unsigned int }x=0x03020100
    unsigned char *xarray = (unsigned char *) &x;
    for (int i=0; i<4; i++) {
        printf("%02x", xarray[i]);
    }
    printf("\n");
    return 0;
}
```


Possible results:

```
00010203
03020100
```


Fractional binary numbers

- What is $\mathbf{1 0 1 1 . 1 0 1}_{2}$?

Fractional Binary Numbers

- bits to right of "binary point" represent fractional powers of 2
- represents rational number: $\quad \sum^{i} b_{k} \times 2^{k}$

Representable Numbers

- Limitation \#1
- can exactly represent only numbers of the form $n / 2^{k}$
» other rational numbers have repeating bit representations
- value representation
» $1 / 30.0101010101[01] \ldots 2$
» $1 / 50.001100110011[0011] . . .2$
» $1 / 10 \quad 0.0001100110011[0011] . . .2$
- Limitation \#2
- just one setting of decimal point within the w bits
» limited range of numbers (very small values? very large?)

IEEE Floating Point

- IEEE Standard 754
- established in 1985 as uniform standard for floating point arithmetic
» before that, many idiosyncratic formats
- supported on all major CPUs
- Driven by numerical concerns
- nice standards for rounding, overflow, underflow
- hard to make fast in hardware
» numerical analysts predominated over hardware designers in defining standard

Floating-Point Representation

- Numerical Form:
$(-1)^{\mathrm{S}} \mathrm{M} 2^{\mathrm{E}}$
- sign bit s determines whether number is negative or positive
- significand M normally a fractional value in range [1.0,2.0)
- exponent E weights value by power of two
- Encoding
- MSB s is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

s	\exp	frac

Precision options

- Single precision: 32 bits

s	\exp	frac	
1	8-bits	23-bits	

- Double precision: 64 bits

s	\exp	frac	
1	11-bits	52-bits	

- Extended precision: 80 bits (Intel only)

s	exp	frac	
$1 \quad$ 15-bits		64-bits	

"Normalized" Values

- When: $\exp \neq 000 \ldots 0$ and $\exp \neq 111 . . .1$
- Exponent coded as biased value: $\mathrm{E}=\mathrm{Exp}$ - Bias
- exp: unsigned value exp
- bias $=2^{\mathrm{k}-1}-1$, where k is number of exponent bits
» single precision: 127 (Exp: 1...254, E: -126...127)
» double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: $\mathrm{M}=1 . \mathrm{xxx}$...x2
- XXX...x: bits of frac
- minimum when frac=000... $0(\mathrm{M}=1.0)$
- maximum when frac=111... $1(M=2.0-\varepsilon)$
- get extra leading bit for "free"

Normalized Encoding Example

- Value: float $F=15213.0$;
$-15213_{10}=11101101101101_{2}$

$$
=1.1101101101101_{2} \times 2^{13}
$$

- Significand

$M=$	$1 . \underline{1101101101101_{2}}$
frac $=$	$\underline{11011011011010000000000_{2}}$

- Exponent

E	$=$	13
bias	$=$	127
\exp	$=$	$140=10001100_{2}$

- Result:
$\underset{\mathrm{s}}{0} 10001100 \underset{\exp }{11011011011010000000000}$

Denormalized Values

- Condition: $\exp =000 . . .0$
- Exponent value: $\mathrm{E}=-$ Bias +1 (instead of $\mathrm{E}=0$ - Bias)
- Significand coded with implied leading 0 : M = 0.xxx.... \mathbf{x}_{2}
- xxx...x: bits of frac
- Cases
$-\exp =000 . .0$, frac $=000 . .0$
» represents zero value
» note distinct values: +0 and -0 (why?)
- exp $=000$... 0, frac $\neq 000 . . .0$
» numbers closest to 0.0
» equispaced

Special Values

- Condition: $\exp =111 . . .1$
- Case: $\exp =111 . . .1$, frac $=000 . . .0$
- represents value ∞ (infinity)
- operation that overflows
- both positive and negative
- e.g., $1.0 / 0.0=-1.0 /-0.0=+\infty, 1.0 /-0.0=-\infty$
- Case: exp = 111...1, frac $\neq 000 . . .0$
- not-a-number (NaN)
- represents case when no numeric value can be determined
- e.g., sqrt(-1), $\infty-\infty, \infty \times 0$

Visualization: Floating-Point Encodings

Tiny Floating-Point Example

s	\exp	frac
1	4-bits	3-bits

- 8-bit Floating Point Representation
- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac
- Same general form as IEEE Format
- normalized, denormalized
- representation of $\mathbf{0}, \mathrm{NaN}$, infinity

Dynamic Range (Positive Only)

	s	exp	frac	E	Value	
	0	0000	000	-6	0	
	0	0000	001	-6	1/8*1/64 $=1 / 512$	closest to zero
Denormalized numbers	0	0000	010	-6	$2 / 8 * 1 / 64=2 / 512$	
	0	0000	110	-6	6/8*1/64 $=6 / 512$	
	0	0000	111	-6	$7 / 8 * 1 / 64=7 / 512$	largest denorm
	0	0001	000	-6	$8 / 8 * 1 / 64=8 / 512$	smallest norm
	0	0001	001	-6	$9 / 8 * 1 / 64=9 / 512$	
	0	0110	110	-1	14/8*1/2 = 14/16	
	0	0110	111	-1	15/8*1/2 = 15/16	closest to 1 below
Normalized numbers	0	0111	000	0	8/8*1 $=1$	
	0	0111	001	0	9/8*1 $=9 / 8$	closest to 1 above
	0	0111	010	0	10/8*1 $=10 / 8$	
	0	1110	110	7	14/8*128 = 224	
	0	1110	111	7	15/8*128 $=240$	largest norm
	0	1111	000	n / a	inf	

Distribution of Values

- 6-bit IEEE-like format
- e = 3 exponent bits
- $\mathbf{f}=\mathbf{2}$ fraction bits
- bias is $\mathbf{2}^{3-1}-1=3$

- Notice how the distribution gets denser toward zero.

8 values

Distribution of Values (close-up view)

- 6-bit IEEE-like format
- e = 3 exponent bits
- $f=2$ fraction bits
- bias is 3

Quiz 2

- 6-bit IEEE-like format
- e = 3 exponent bits
- $f=2$ fraction bits
- bias is 3

What number is represented by $001010 ?$
a) 3
b) 1.5
c) .75
d) none of the above

Mapping Real Numbers to Float

- The real number 3 is represented as 010010
- The real number 3.5 is represented as 010011
- How is the real number 3.4 represented?

010011

- How is the real number π represented?

010010

Mapping Real Numbers to Float

- If R is a real number, it's mapped to the floating-point number whose value is closest to \mathbf{R}
- What if it's midway between two values?
- rounding rules determine outcome

Floats are Sets of Values

- If A, B, and C are successive floating-point values
- e.g., 010001, 010010, and 010011
- B represents all real numbers from midway between A and B through midway between B and C

Significance

- Normalized numbers
- for a particular exponent value E and an S-bit significand, the range from 2^{E} up to $2^{\mathrm{E}+1}$ is divided into 2^{s} equi-spaced floating-point values
» thus each floating-point value represents $1 / 2^{S}$ of the range of values with that exponent
" all bits of the significand are important
» we say that there are S significant bits - for reasonably large S, each floating-point value covers a rather small part of the range
- high accuracy
- for $S=23$ (32-bit float), accurate to one in 2^{23} (.0000119\% accuracy)

Significance

- Unnormalized numbers
- high-order zero bits of the significand aren't important
- in 8-bit floating point, 00000001 represents 2^{-9}
» it is the only value with that exponent: 1 significant bit (either 2^{-9} or 0)
» 50\% accuracy
- 00000010 represents 2^{-8}

00000011 represents $1.5^{*} 2^{-8}$
» only two values with exponent -8: 2 significant bits (encoding those two values, as well as 2^{-9} and 0)
" 25\% accuracy

- fewer significant bits means less accuracy
-00000001 represents a range of values from .5*2-9 to 1.5*2-9

+/- Zero

- Only one zero for ints
- an int is a single number, not a range of numbers, thus there can be only zero
- Floating-point zero
- a range of numbers around the real 0
- it really matters which side of 0 we're on!
» a very large negative number divided by a very small negative number should be positive

$$
-\infty /-0=+\infty
$$

» a very large positive number divided by a very small negative number should be negative

$$
+\infty /-0=-\infty
$$

CS 33

Intro to Machine Programming

Machine Model

Memory

Processor: Some Details

Processor: Basic Operation

> while (forever) \{ fetch instruction IP points at decode instruction fetch operands
> execute
> store results
> update IP and condition code
\}

Instructions ...

Op code Operand1 Operand2

Operands

- Form
- immediate vs. reference
" value vs. address
- How many?
- 3
» add a,b,c
- $\mathbf{c}=\mathbf{a}+\mathbf{b}$
- 2
» add a,b
- b += a

Operands (continued)

- Accumulator
- special memory in the processor
» known as a register
» fast access
- allows single-operand instructions
» add a
- acc += a
» add b
- acc += b

From C to Assembler ...

$$
\begin{aligned}
& a=(b+c) * d ; \\
& \text { mov } \\
& \text { b, \% acc } \\
& \text { add } \\
& \text { c, \% } \mathrm{OCc} \\
& \text { mul } d, \% a c c \\
& \text { mov \%acc,a } \\
& \text {. L2 }
\end{aligned}
$$

Condition Codes

- Set of flags giving status of most recent operation:
- zero flag
» result was zero
- sign flag
» for signed arithmetic interpretation: sign bit is set
- overflow flag
» for signed arithmetic interpretation
- carry flag (generated by carry or borrow out of mostsignificant bit)
» for unsigned arithmetic interpretation
- Set implicitly by arithmetic instructions
- Set explicitly by compare instruction
- cmp a,b
» sets flags based on result of b-a

Examples (1)

- Assume 32-bit arithmetic
- x is 0×80000000
- TMIN if interpreted as two's-complement
- $\mathbf{2}^{31}$ if interpreted as unsigned
- $\mathbf{x - 1}$ ($0 \times 7 f f f f f f f)$
- TMAX if interpreted as two's-complement
- $\mathbf{2}^{31}$-1 if interpreted as unsigned
- zero flag is not set
- sign flag is not set
- overflow flag is set
- carry flag is not set

Examples (2)

- Xis $0 x f f f f f f f f$
- -1 if interpreted as two's-complement
- UMAX (2 $2^{32}-1$) if interpreted as unsigned
- x+1 (0x00000000)
- zero under either interpretation
- zero flag is set
- sign flag is not set
- overflow flag is not set
- carry flag is set

Examples (3)

- Xis $0 x f f f f f f f f$
- -1 if interpreted as two's-complement
- UMAX ($2^{32}-1$) if interpreted as unsigned
- $x+2$ (0×0000001)
- (+)1 under either interpretation
- zero flag is not set
- sign flag is not set
- overflow flag is not set
- carry flag is set

Quiz 3

- Set of flags giving status of most recent operation:
- zero flag
» result was zero
- sign flag
» for signed arithmetic interpretation: sign bit is set
- overflow flag
» for signed arithmetic interpretation
- carry flag (generated by carry or borrow out of most-significant bit)
» for unsigned arithmetic interpretation
- Set explicitly by compare instruction

Which flags are set to one by "cmp 2,1"?
a) overflow flag only
b) carry flag only
c) sign and carry flags only
d) sign and overflow flags only
e) sign, overflow, and carry flags

- cmp a,b
» sets flags based on result of $b-a$

Jump Instructions

- Unconditional jump
- just do it
- Conditional jump
- to jump or not to jump determined by conditioncode flags
- field in the op code indicates how this is computed
- in assembler language, simply say
» je
- jump on equal
» jne
- jump on not equal
» jg
- jump on greater than (signed)
» etc.

Addresses

Memory

Addresses

```
int b;
int func(int c, int d) {
    int a;
    a = (b + c) * d;
    ...
}
mov ?,%acc
    add ?,%acc
    mul ?,%acc
    mov %acc,?
```

- One copy of b for duration of program's execution
- b's address is the same for each call to func
- Different copies of a, c, and d for each call to func
- addresses are different in each call

Relative Addresses

- Absolute address
- actual location in memory
- Relative address
- offset from some other location
- Blob's absolute address is 10000
- Datum's relative address (to Blob) is 100
- its absolute address is 10100

Base Registers

```
mov $10000, %base
mov $10, 100(%base)
```


Addresses

long b ;
int func(long c, long $d)$
long a;
$a=(b+c) * d ;$
\}

$$
\begin{array}{ll}
& \\
\text { mov } & 1000, \% \mathrm{acc} \\
\mathrm{add} & -8(\% \mathrm{base}), \% \mathrm{acc} \\
\mathrm{mul} & -16(\% \mathrm{base}), \% \mathrm{acc} \\
\mathrm{mov} & \% \mathrm{acc},-24(\% \mathrm{base})
\end{array}
$$

Memory

Quiz 4

Suppose the value in base is 10,000 . What is the address of c?
a) 10,016
b) 10,008
c) 9992
d) 9984

$$
\begin{array}{ll}
\text { mov } & 1000, \% \mathrm{acc} \\
\text { add } & -8(\% \mathrm{base}), \% \mathrm{acc} \\
\text { mul } & -12(\% \mathrm{base}), \% \mathrm{acc} \\
\text { mov } & \% \mathrm{acc},-16(\% \mathrm{base})
\end{array}
$$

Memory

Registers

Registers vs. Memory

Intel x86

- Intel created the 8008 (in 1972)
- 8008 begat 8080
- 8080 begat 8086
- 8086 begat 8088
- 8086 begat 286
- 286 begat 386
- 386 begat 486
- 486 begat Pentium
- Pentium begat Pentium Pro
- Pentium Pro begat Pentium II
- ad infinitum
2^{64}
- 2^{32} used to be considered a large number
- one couldn't afford $\mathbf{2}^{32}$ bytes of memory, so no problem with that as an uper bound
- Intel (and others) saw need for machines with 64-bit addresses
- devised IA64 architecture with HP
» became known as Itanium
» very different from x86
- AMD also saw such a need
- developed 64-bit extension to x86, called x86-64
- Itanium flopped
- x86-64 dominated
- Intel, reluctantly, adopted x86-64

Why Intel?

- Most CS Department machines are Intel
- An increasing number of personal machines are not
- Apple has switched to ARM
- packaged into their M1, M2, etc. chips
""Apple Silicon"
- Intel x86-64 is very different from ARM64 internally
- Programming concepts are similar
- We cover Intel; most of the concepts apply to ARM

