
CS33 Intro to Computer Systems X–1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Machine Programming (2)

CS33 Intro to Computer Systems X–2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Condition Codes
• Set of flags giving status of most

recent operation:
– zero flag

» result was zero
– sign flag

» for signed arithmetic interpretation: sign
bit is set

– overflow flag
» for signed arithmetic interpretation

– carry flag (generated by carry or borrow
out of most-significant bit)
» for unsigned arithmetic interpretation

• Set explicitly by compare
instruction

– cmp a,b
» sets flags based on result of b-a

Which flags are set to
one by “cmp 2,1”?

a) overflow flag only
b) carry flag only
c) sign and carry

flags only
d) sign and overflow

flags only
e) sign, overflow, and

carry flags

Quiz 1

CS33 Intro to Computer Systems X–3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Jump Instructions

• Unconditional jump
– just do it

• Conditional jump
– to jump or not to jump determined by condition-

code flags
– field in the op code indicates how this is computed
– in assembler language, simply say

» je
• jump on equal

» jne
• jump on not equal

» jg
• jump on greater than (signed)

» etc.

CS33 Intro to Computer Systems X–4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Addresses

int a, b, c, d;

int main() {
 a = (b + c) * d;

 ...

}

global
variables

d1012:
c1008:
b1004:
a1000:

mov b,%acc
add c,%acc
mul d,%acc
mov %acc,a

mov 1004,%acc
add 1008,%acc
mul 1012,%acc
mov %acc,1000

Memory

CS33 Intro to Computer Systems X–5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Addresses

int b;

int func(int c, int d) {
 int a;
 a = (b + c) * d;

 ...

}

mov ?,%acc

add ?,%acc

mul ?,%acc

mov %acc,?

• One copy of b for duration of
program’s execution
• b’s address is the same in

each call to func
• Different copies of a, c, and d

in each call to func
• addresses are different in

each call

CS33 Intro to Computer Systems X–6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Relative Addresses

• Absolute address
– actual location in

memory
• Relative address

– offset from some
other location

Memory
0

1000

264-1

Blob

10000
Datum 100

• Blob’s absolute
address is 10000

• Datum’s relative
address (to Blob)
is 100
– its absolute

address is
10100

CS33 Intro to Computer Systems X–7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Base Registers

mov $10000, %base

mov $10, 100(%base)

Memory
0

1000

264-1

Blob

10000
Datum 100

base register

CS33 Intro to Computer Systems X–8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Addresses

long b;

int func(long c, long d) {
 long a;
 a = (b + c) * d;

 ...

}

mov 1000,%acc

add -8(%base),%acc

mul -16(%base),%acc

mov %acc,-24(%base)

global
variables

Memory

earlier stack
frame

previous stack
frame

func stack
frame

b1000:

c
d
a

base ®

CS33 Intro to Computer Systems X–9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2

long b;

int func(long c, long d) {
 long a;
 a = (b + c) * d;

 ...

}

mov 1000,%acc

add -8(%base),%acc

mul -16(%base),%acc

mov %acc,-24(%base)

global
variables

Memory

earlier stack
frame

previous stack
frame

func stack
frame

b1000:

c
d
a

base ®

Suppose the value in base is
10,000. What is the address of
c?

a) 10,016
b) 10,008
c) 9992
d) 9984

CS33 Intro to Computer Systems X–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Registers

Instruction pointer

Condition codes

Execution
engine

Accumulator
Base register

more
interchangeable

CS33 Intro to Computer Systems X–11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Registers vs. Memory

Memory
(aka RAM)

instructions
and data

data

Instruction pointer

Condition codes

Execution
engine

Accumulator
Base register

more

a relatively long
distance

CS33 Intro to Computer Systems X–12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Intel x86
• Intel created the 8008 (in 1972)
• 8008 begat 8080
• 8080 begat 8086
• 8086 begat 8088
• 8088 begat 286
• 286 begat 386
• 386 begat 486
• 486 begat Pentium
• Pentium begat Pentium Pro
• Pentium Pro begat Pentium II
• ad infinitum

IA32

CS33 Intro to Computer Systems X–13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

264
• 232 used to be considered a large number

– one couldn’t afford 232 bytes of memory, so no
problem with that as an upper bound

• Intel (and others) saw need for machines with
64-bit addresses

– devised IA64 architecture with HP
» became known as Itanium
» very different from x86

• AMD also saw such a need
– developed 64-bit extension to x86, called x86-64

• Itanium flopped
• x86-64 dominated
• Intel, reluctantly, adopted x86-64

CS33 Intro to Computer Systems X–14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Why Intel?

• Most CS Department machines are Intel
• An increasing number of personal machines

are not
– Apple has switched to ARM
– packaged into their M1, M2, etc. chips

» “Apple Silicon”

• Intel x86-64 is very different from ARM64 ⏤
internally

• Programming concepts are similar
• We cover Intel; most of the concepts apply to

ARM

CS33 Intro to Computer Systems X–15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Data Types on IA32 and x86-64
• “Integer” data of 1, 2, or 4 bytes (plus 8 bytes on x86-

64)
– data values

» whether signed or unsigned depends on interpretation
– addresses (untyped pointers)

• Floating-point data of 4, 8, or 10 bytes

• No aggregate types such as arrays or structures
– just contiguously allocated bytes in memory

CS33 Intro to Computer Systems X–16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Operand Size

byte

short

long

quad
• Rather than mov ...

– movb
– movs
– movl
– movq (x86-64 only)

CS33 Intro to Computer Systems X–17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

General-Purpose Registers (IA32)

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

16-bit virtual registers
(backwards compatibility)

ge
ne

ra
l p

ur
po

se

accumulate

counter

data

base

source
index

destination
index

stack
pointer

base
pointer

Origin
(mostly obsolete)

CS33 Intro to Computer Systems X–18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

%rsp

x86-64 General-Purpose Registers

– Extend existing registers to 64 bits. Add 8 new ones.

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

a1

a2

a3

a4

a5
a6

CS33 Intro to Computer Systems X–19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Moving Data
• Moving data

movq source, dest

• Operand types
– Immediate: constant integer data

» example: $0x400, $-533
» like C constant, but prefixed with ‘$’
» encoded with 1, 2, 4, or 8 bytes

– Register: one of 16 64-bit registers
» example: %rax, %rdx
» %rsp and %rbp have some special uses
» others have special uses for particular instructions

– Memory: 8 consecutive bytes of memory at address given by
register(s)
» simplest example: (%rax)
» various other “address modes”

%rax
%rcx
%rdx
%rbx
%rsi
%rdi
%rsp
%rbp

%r8
%r9
%r10
%r11
%r12
%r13
%r14
%r15

CS33 Intro to Computer Systems X–20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

movq Operand Combinations

Cannot (normally) do memory-memory transfer with a single
instruction

movq

Imm

Reg

Mem

Reg
Mem

Reg
Mem

Reg

Source Dest C Analog

movq $0x4,%rax temp = 0x4;

movq $-147,(%rax) *p = -147;

movq %rax,%rdx temp2 = temp1;

movq %rax,(%rdx) *p = temp;

movq (%rax),%rdx temp = *p;

Src, Dest

CS33 Intro to Computer Systems X–21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Simple Memory Addressing Modes

• Normal (R) Mem[Reg[R]]
– register R specifies memory address

movq (%rcx),%rax

• Displacement D(R) Mem[Reg[R]+D]
– register R specifies start of memory region
–constant displacement D specifies offset

movq 8(%rbp),%rdx

CS33 Intro to Computer Systems X–22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Using Simple Addressing Modes

struct xy {
 long x;
 long y;
}
void swapxy(struct xy *p){
 long temp = p->x;
 p->x = p->y;
 p->y = temp;
}

swap:
 movq (%rdi), %rax
 movq 8(%rdi), %rdx
 movq %rdx, (%rdi)
 movq %rax, 8(%rdi)
 ret

CS33 Intro to Computer Systems X–23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy
struct xy {
 long x;
 long y;
}
void swapxy(struct xy *p){
 long temp = p->x;
 p->x = p->y;
 p->y = temp;
}

Layout of
struct xy

Register Value
%rdi p
%rax temp
%rdx p->y

y

x p0

8

Offset

movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

CS33 Intro to Computer Systems X–24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

456

%rdi 123

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

CS33 Intro to Computer Systems X–25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

456

%rdi 123

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

123

movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

CS33 Intro to Computer Systems X–26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

456

%rdi 123

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

123

456
movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

CS33 Intro to Computer Systems X–27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

456

%rdi 456

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

123

456
movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

CS33 Intro to Computer Systems X–28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

123

%rdi 456

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

123

456
movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

CS33 Intro to Computer Systems X–29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 3

%rbp 0

-8

-16

8

x

y

movq -8(%rbp), %rax
movq (%rax), %rax
movq (%rax), %rax
movq %rax, -16(%rbp)

// a
long x;
long y;
y = x;

// b
long *x;
long y;
y = *x;

// c
long **x;
long y;
y = **x;

// d
long ***x;
long y;
y = ***x;

Which C statements best describe the
assembler code?

CS33 Intro to Computer Systems X–30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Complete Memory-Addressing Modes
• Most general form
 D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+D]

– D: constant “displacement”
– Rb: base register: any of 16† registers
– Ri: index register: any, except for %rsp
– S: scale: 1, 2, 4, or 8

• Special cases
 (Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
 D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
 (Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]
 D Mem[D]

†The instruction pointer may also be used (for a total of 17 registers)

CS33 Intro to Computer Systems X–31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Address-Computation Examples

%rdx 0xf000

%rcx 0x0100

Expression Address Computation Address

0x8(%rdx) 0xf000 + 0x8 0xf008

(%rdx, %rcx) 0xf000 + 0x100 0xf100

(%rdx, %rcx, 4) 0xf000 + 4*0x0100 0xf400

0x80(,%rdx, 2) 2*0xf000 + 0x80 0x1e080

CS33 Intro to Computer Systems X–32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Address-Computation Instruction
• leaq src, dest

– src is address mode expression
– set dest to address denoted by expression

• Uses
– computing addresses without a memory reference
» e.g., translation of p = &x[i];

– computing arithmetic expressions of the form x + k*y
» k = 1, 2, 4, or 8

• Example
long mul12(long x)
{
 return x*12;
}

x is in %rdi
leaq (%rdi,%rdi,2), %rax # t <- x+x*2
shlq $2, %rax # return t<<2

Converted to ASM by compiler:

CS33 Intro to Computer Systems X–33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

32-bit Operands on x86-64

• addl 4(%rdx), %eax
– memory address must be 64 bits
– operands (in this case) are 32-bit

» result goes into %eax
• lower half of %rax
• upper half is filled with zeroes

CS33 Intro to Computer Systems X–34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 4

What value ends up in %ecx?

movq $1000,%rax

movq $1,%rbx

movl 2(%rax,%rbx,2),%ecx

a) 0x04050607
b) 0x07060504
c) 0x06070809
d) 0x09080706

0x07
0x06
0x05
0x04
0x03
0x02
0x01
0x001000:

1001:
1002:
1003:
1004:
1005:
1006:
1007:

0x09
0x081008:

1009:

Hint:

%rax

