
Most of the slides in this lecture are either from or adapted from slides provided by the
authors of the textbook “Computer Systems: A Programmer’s Perspective,” 2nd Edition
and are provided from the website of Carnegie-Mellon University, course 15-213, taught
by Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated
“Supplied by CMU” in the notes section of the slides.

CS33 Intro to Computer Systems XI–1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Machine Programming (3)

Adapted from a slide supplied by CMU.

The instruction pointer is referred to as %rip. We'll see its use (in addressing) a bit later
in the course.

CS33 Intro to Computer Systems XI–2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Complete Memory-Addressing Modes
• Most general form
 D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+D]
– D: constant “displacement”
– Rb: base register: any of 16† registers
– Ri: index register: any, except for %rsp
– S: scale: 1, 2, 4, or 8

• Special cases
 (Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
 D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
 (Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]
 D Mem[D]

†The instruction pointer may also be used (for a total of 17 registers)

Adapted from a slide from CMU

CS33 Intro to Computer Systems XI–3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Address-Computation Examples

%rdx 0xf000

%rcx 0x0100

Expression Address Computation Address

0x8(%rdx) 0xf000 + 0x8 0xf008

(%rdx, %rcx) 0xf000 + 0x100 0xf100

(%rdx, %rcx, 4) 0xf000 + 4*0x0100 0xf400

0x80(,%rdx, 2) 2*0xf000 + 0x80 0x1e080

Adapted from a slide supplied by CMU.

Note that a function returns a value by putting it in %rax.

CS33 Intro to Computer Systems XI–4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Address-Computation Instruction
• leaq src, dest

– src is address mode expression
– set dest to address denoted by expression

• Uses
– computing addresses without a memory reference
» e.g., translation of p = &x[i];

– computing arithmetic expressions of the form x + k*y
» k = 1, 2, 4, or 8

• Example
long mul12(long x)
{
 return x*12;
}

x is in %rdi
leaq (%rdi,%rdi,2), %rax # t <- x+x*2
shlq $2, %rax # return t<<2

Converted to ASM by compiler:

On x86-64, for instructions with 32-bit (long) operands that produce 32-bit results going
into a register, the register must be a 32-bit register; the higher-order 32 bits are filled
with zeroes.

CS33 Intro to Computer Systems XI–5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

32-bit Operands on x86-64

• addl 4(%rdx), %eax
– memory address must be 64 bits
– operands (in this case) are 32-bit

» result goes into %eax
• lower half of %rax
• upper half is filled with zeroes

CS33 Intro to Computer Systems XI–6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1

What value ends up in %ecx?

movq $1000,%rax
movq $1,%rbx
movl 2(%rax,%rbx,2),%ecx

a) 0x04050607
b) 0x07060504
c) 0x06070809
d) 0x09080706

0x07
0x06
0x05
0x04
0x03
0x02
0x01
0x001000:

1001:
1002:
1003:
1004:
1005:
1006:
1007:

0x09
0x081008:

1009:

Hint:

%rax

Here we have a simple function that swaps the two components of a structure that's
passed to it. (Assume that %rdi contains the argument.) Note that even though we use
the "e" form of the registers to hold the (32-bit) data, we need the "r" form to hold the 64-
bit addresses.

CS33 Intro to Computer Systems XI–7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Swapxy for Ints

struct xy {
 int x;
 int y;
}
void swapxy(struct xy *p){
 int temp = p->x;
 p->x = p->y;
 p->y = temp;
}

swap:
 movl (%rdi), %eax
 movl 4(%rdi), %edx
 movl %edx, (%rdi)
 movl %eax, 4(%rdi)
 ret

• Pointers are 64 bits
• What they point to are 32 bits

Note that using single-byte versions of registers has a different behavior from using 4-
byte versions of registers. Putting data into the latter using mov causes the upper bytes
to be zeroed. But with the byte versions, putting data into them does not affect the
upper bytes.

CS33 Intro to Computer Systems XI–8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Bytes

• Each register has a byte version
– e.g., %r10: %r10b; see earlier slide for x86 registers

• Needed for byte instructions
– movb (%rax, %rsi), %r10b
– sets only the low byte in %r10

» other seven bytes are unchanged

• Alternatives
– movzbq (%rax, %rsi), %r10

» copies byte to low byte of %r10
» zeroes go to higher bytes

– movsbq (%rax, %rsi), %r10
» copies byte to low byte of %r10
» sign is extended to all higher bits

Supplied by CMU.

Note that normally one does not ask gcc to produce assembler code, but instead it
compiles C code directly into machine code (producing an object file). Note also that the
gcc command actually invokes a script; the compiler (also known as gcc) compiles code
into either assembler code or machine code; if necessary, the assembler (as) assembles
assembler code into object code. The linker (ld) links together multiple object files
(containing object code) into an executable program.

CS33 Intro to Computer Systems XI–9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

text

text

binary

binary

Compiler (gcc -S)

Assembler (as)

Linker (ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C into Object Code
– Code in files p1.c p2.c
– Compile with command: gcc –O1 p1.c p2.c -o p
»use basic optimizations (-O1)
»put resulting binary in file p

CS33 Intro to Computer Systems XI–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Example
long ASum(long *a, unsigned long size) {
 long i, sum = 0;
 for (i=0; i<size; i++)
 sum += a[i];
 return sum;
}

int main() {
 long array[3] = {2,117,-6};
 long sum = ASum(array, 3);
 return sum;
}

Here is the assembler code produced by gcc from the C code of the previous slide. Note
that the two movl instructions are ostensibly just copying a zero into %edx (a 32-bit
register). However, what it’s really doing is copying a zero in the 64-bit register %rdx (the
64-bit extension of %edx). This happens because, as we discussed earlier, when one
copies something into a 32-bit register, the high-order 32 bits of its extension is filled
with 0s.

CS33 Intro to Computer Systems XI–11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Assembler Code
ASum:
 testq %rsi, %rsi
 je .L4
 movq %rdi, %rax
 leaq (%rdi,%rsi,8), %rcx
 movl $0, %edx

.L3:
 addq (%rax), %rdx
 addq $8, %rax
 cmpq %rcx, %rax
 jne .L3
.L1:

 movq %rdx, %rax
 ret
.L4:
 movl $0, %edx
 jmp .L1

main:
 subq $32, %rsp
 movq $2, (%rsp)
 movq $117, 8(%rsp)
 movq $-6, 16(%rsp)
 movq %rsp, %rdi

 movl $3, %esi
 call ASum
 addq $32, %rsp
 ret

Adapted from a slide supplied by CMU.

The lefthand column shows the object code produced by gcc. This was produced either
by assembling the code of the previous slide, or by compiling the C code of the slide
before that.

Suppose that all we have is the object code – we don’t have the assembler code and the
C code. Can we translate for object code to assembler code? (This is known as
disassembling.)

CS33 Intro to Computer Systems XI–12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Code for ASum
0x1125 <ASum>:
 0x48
 0x85
 0xf6
 0x74
 0x1c
 0x48
 0x89
 0xf8
 0x48
 0x8d
 0x0c
 0xf7
 .
 .
 .

Object Code

• Assembler
– translates .s into .o
– binary encoding of each instruction
– nearly complete image of executable

code
– missing linkages between code in

different files
• Linker

– resolves references between files
– combines with static run-time

libraries
» e.g., code for printf

– some libraries are dynamically linked
» linking occurs when program begins

execution

• Total of 39 bytes
• Each instruction:

1, 2, or 3 bytes
• Starts at address
0x1125

This is taken from Intel 64 and IA-32 Architecture Software Developer’s Manual, Volume
2: Instruction Set Reference; Order Number 325462-043US, Intel Corporation, May
2012 (https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-
sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4)

The point of the slide is that the instruction format is complicated, too much so for a
human to deal with. Which is why we talk about disassemblers in the next slides.

CS33 Intro to Computer Systems XI–13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Instruction Format

https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4

Adapted from a slide supplied by CMU.

objdump's rendition is approximate because it assumes everything in the file is
assembly code, and thus translates data into (often really weird) assembly code. Also, it
leaves off the suffix at the end of each instruction, assuming it can be determined from
context.

CS33 Intro to Computer Systems XI–14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Disassembled
Disassembling Object Code

• Disassembler
objdump -d <file>
– useful tool for examining object code
– produces approximate rendition of assembly code

0000000000001125 <ASum>:
 1125: 48 85 f6 test %rsi,%rsi
 1128: 74 1c je 1146 <ASum+0x21>
 112a: 48 89 f8 mov %rdi,%rax
 112d: 48 8d 0c f7 lea (%rdi,%rsi,8),%rcx
 1131: ba 00 00 00 00 mov $0x0,%edx
 1136: 48 03 10 add (%rax),%rdx
 1139: 48 83 c0 08 add $0x8,%rax
 113d: 48 39 c8 cmp %rcx,%rax
 1140: 75 f4 jne 1136 <ASum+0x11>
 1142: 48 89 d0 mov %rdx,%rax
 1145: c3 retq
 1146: ba 00 00 00 00 mov $0x0,%edx
 114b: eb f5 jmp 1142 <ASum+0x1d>

Adapted from a slide supplied by CMU.

The "x/35xb" directive to gdb says to examine (first x, meaning print) 35 bytes (b) viewed
as hexadecimal (second x) starting at ASum.

The format of the output has been modified a bit from what gdb actually produces, so
that it will fit on the slide. In the dump of the assembler code, the addresses are actually
64-bit values (in hex) – we have removed the leading 0s. The output of the x command is
actually displayed in multiple columns. We have reorganized it into one column.

CS33 Intro to Computer Systems XI–15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Disassembled

Dump of assembler code for function ASum:
 0x1125 <+0>: test %rsi,%rsi
 0x1128 <+3>: je 0x1146 <ASum+33>
 0x112a <+5>: mov %rdi,%rax
 0x112d <+8>: lea (%rdi,%rsi,8),%rcx
 0x1131 <+12>: mov $0x0,%edx
 ...

Alternate Disassembly

• Within gdb debugger
gdb <file>
disassemble ASum
– disassemble the ASum object code
x/39xb ASum
– examine the 39 bytes starting at ASum

Object
0x1125:
 0x48
 0x85
 0xf6
 0x74
 0x1c
 0x48
 0x89
 0xf8
 0x48
 0x8d
 0x0c
 0xf7
 .
 .
 .

The source for this is http://en.wikipedia.org/wiki/X86_instruction_listings, viewed on
6/20/2017, which came with the caveat that it may be out of date. While it's likely that
more instructions have been added since then, we won't be covering them in 33!

CS33 Intro to Computer Systems XI–16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

How Many Instructions are There?
• We cover ~30
• Implemented by Intel:

– 80 in original 8086
architecture

– 7 added with 80186
– 17 added with 80286
– 33 added with 386
– 6 added with 486
– 6 added with Pentium
– 1 added with Pentium MMX
– 4 added with Pentium Pro
– 8 added with SSE
– 8 added with SSE2
– 2 added with SSE3
– 14 added with x86-64
– 10 added with VT-x
– 2 added with SSE4a

• Total: 198
• Doesn’t count:

– floating-point instructions
» ~100

– SIMD instructions
» lots

– AMD-added instructions
– undocumented instructions

Supplied by CMU.

Note that for shift instructions, the Src operand (which is the size of the shift) must
either be an immediate operand or be a designator for a one-byte register (e.g., %cl – see
the slide on general-purpose registers for IA32).

Also note that what's given in the slide are the versions for 32-bit operands. There are
also versions for 8-, 16-, and 64-bit operands, with the "l" replaced with the appropriate
letter ("b", "s", or "q").

The imul instruction performs a signed multiply; the mul instruction performs an
unsigned multiply. This is one of the few instances in which different instructions are
required for signed and unsigned integers. The reason for this is to make certain, for the
signed case, that the sign of the result is correct (see slides VIII-18 and VIII-19).

CS33 Intro to Computer Systems XI–17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Some Arithmetic Operations

• Two-operand instructions:
Format Computation
addl Src,Dest Dest = Dest + Src
subl Src,Dest Dest = Dest - Src
imull Src,Dest Dest = Dest * Src
shll Src,Dest Dest = Dest << Src Also called sall
sarl Src,Dest Dest = Dest >> Src Arithmetic
shrl Src,Dest Dest = Dest >> Src Logical
xorl Src,Dest Dest = Dest ^ Src
andl Src,Dest Dest = Dest & Src
orl Src,Dest Dest = Dest | Src

– watch out for argument order!

Adapted from a slide supplied by CMU.

CS33 Intro to Computer Systems XI–18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Some Arithmetic Operations

• One-operand Instructions
incl Dest = Dest + 1
decl Dest = Dest - 1
negl Dest = - Dest
notl Dest = ~Dest

• See textbook for more instructions

• See Intel documentation for even more

Supplied by CMU, but converted to x86-64.

CS33 Intro to Computer Systems XI–19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Arithmetic Expression Example

int arith(int x, int y, int z)
{
 int t1 = x+y;
 int t2 = z+t1;
 int t3 = x+4;
 int t4 = y * 48;
 int t5 = t3 + t4;
 int rval = t2 * t5;
 return rval;
}

arith:
 leal (%rdi,%rsi), %eax
 addl %edx, %eax
 leal (%rsi,%rsi,2), %edx
 shll $4, %edx

leal 4(%rdi,%rdx), %ecx
 imull %ecx, %eax
 ret

Supplied by CMU, but converted to x86-64.

CS33 Intro to Computer Systems XI–20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Understanding arith

leal (%rdi,%rsi), %eax
 addl %edx, %eax
 leal (%rsi,%rsi,2), %edx
 shll $4, %edx

leal 4(%rdi,%rdx), %ecx
 imull %ecx, %eax
 ret

int arith(int x, int y, int z)
{
 int t1 = x+y;
 int t2 = z+t1;
 int t3 = x+4;
 int t4 = y * 48;
 int t5 = t3 + t4;
 int rval = t2 * t5;
 return rval;
}

%rsi

%rdi

y

x

%rdx z

Supplied by CMU, but converted to x86-64.

By convention, the first three arguments to a function are placed in registers rdi, rsi,
and rdx, respectively. Note that, also by convention, functions put their return values in
register eax/rax.

CS33 Intro to Computer Systems XI–21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Understanding arith
int arith(int x, int y, int z)
{
 int t1 = x+y;
 int t2 = z+t1;
 int t3 = x+4;
 int t4 = y * 48;
 int t5 = t3 + t4;
 int rval = t2 * t5;
 return rval;
}

leal (%rdi,%rsi), %eax # eax = x+y (t1)
 addl %edx, %eax # eax = t1+z (t2)
 leal (%rsi,%rsi,2), %edx # edx = 3*y (t4)
 shll $4, %edx # edx = t4*16 (t4)

leal 4(%rdi,%rdx), %ecx # ecx = x+4+t4 (t5)
 imull %ecx, %eax # eax *= t5 (rval)
 ret

%rsi

%rdi

y

x

%rdx z

Supplied by CMU, but converted to x86-64.

CS33 Intro to Computer Systems XI–22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Observations about arith
int arith(int x, int y, int z)
{
 int t1 = x+y;
 int t2 = z+t1;
 int t3 = x+4;
 int t4 = y * 48;
 int t5 = t3 + t4;
 int rval = t2 * t5;
 return rval;
}

leal (%rdi,%rsi), %eax # eax = x+y (t1)
 addl %edx, %eax # eax = t1+z (t2)
 leal (%rsi,%rsi,2), %edx # edx = 3*y (t4)
 shll $4, %edx # edx = t4*16 (t4)

leal 4(%rdi,%rdx), %ecx # ecx = x+4+t4 (t5)
 imull %ecx, %eax # eax *= t5 (rval)
 ret

• Instructions in different order
from C code

• Some expressions might
require multiple instructions

• Some instructions might cover
multiple expressions

Supplied by CMU, but converted to x86-64.

CS33 Intro to Computer Systems XI–23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Another Example

int logical(int x, int y)
{
 int t1 = x^y;
 int t2 = t1 >> 17;
 int mask = (1<<13) - 7;
 int rval = t2 & mask;
 return rval;
}

xorl %esi, %edi # edi = x^y (t1)
 sarl $17, %edi # edi = t1>>17 (t2)
 movl %edi, %eax # eax = edi
 andl $8185, %eax # eax = t2 & mask (rval)

213 = 8192, 213 – 7 = 8185

Supplied by CMU, but converted to x86-64.

%rip is the instruction-pointer register. It contains the address of the next instruction to
be executed. CF, ZF, SF, and OF are the condition codes, referring to carry flag, zero
flag, sign flag, and overflow flag.

CS33 Intro to Computer Systems XI–24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Processor State (x86-64, Partial)

%rsp

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

%rip CF ZF SF OF
condition codes

a1
a2
a3
a4

a5
a6

Supplied by CMU.

CS33 Intro to Computer Systems XI–25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Condition Codes (Implicit Setting)

• Single-bit registers
CF carry flag (for unsigned) SF sign flag (for signed)
ZF zero flag OF overflow flag (for signed)

• Implicitly set (think of it as side effect) by arithmetic
operations
example: addl/addq Src,Dest ↔ t = a+b
CF set if carry out from most significant bit or borrow (unsigned overflow)
ZF set if t == 0
SF set if t < 0 (as signed)
OF set if two’s-complement (signed) overflow
(a>0 && b>0 && t<0) || (a<0 && b<0 && t>=0)

• Not set by lea instruction

Supplied by CMU.

CS33 Intro to Computer Systems XI–26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Condition Codes (Explicit Setting: Compare)

• Explicit setting by compare instruction
cmpl/cmpq src2, src1
 compares src1:src2
cmpl b,a like computing a-b without setting destination

CF set if carry out from most significant bit or borrow (used for
unsigned comparisons)
ZF set if a == b
SF set if (a-b) < 0 (as signed)
OF set if two’s-complement (signed) overflow
(a>0 && b<0 && (a-b)<0) || (a<0 && b>0 && (a-b)>0)

Supplied by CMU.

Note that if a&b<0, what is meant is that the most-significant bit is 1.

CS33 Intro to Computer Systems XI–27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Condition Codes (Explicit Setting: Test)

• Explicit setting by test instruction
testl/testq src2, src1
testl b,a like computing a&b without setting destination

– sets condition codes based on value of Src1 & Src2
– useful to have one of the operands be a mask

ZF set when a&b == 0
SF set when a&b < 0

Supplied by CMU.

These operations allow one to set a byte depending on the values of the condition codes.

Some of these conditions aren't all that obvious. Suppose we are comparing A with B
(cmpl B,A). Thus the condition codes would be set as if we computed A-B. For signed
arithmetic, If A >= B, then the true result is non-negative. But some issues come up
because of two's complement arithmetic with a finite word size. If overflow does not
occur, then the sign flag should not be set. If overflow does occur (because A is positive,
B is negative, and A-B is a large positive number that does not fit in an int), then even
though the true result should have been positive, the actual result is negative. So, if
both the sign flag and the overflow flag are not set, we know that A >= B. If both flags are
set, we know the true result of the subtraction is positive and thus A>=B. But if one of
the two flags is set and the other isn't, then A must be less than B. Thus if ~(SF^OF) is
1, we know that A>=B. If ZF (zero flag) is set, we know that A==B. Thus for A>B, ZF is
not set.

For unsigned arithmetic, if A>B, then subtracting B from A doesn't require a borrow and
thus CF is not set; and since A is not equal to B, ZF is not set. If A<B, then subtracting
B from A requires a borrow and thus CF is set.

The other cases can be worked out similarly.

CS33 Intro to Computer Systems XI–28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Reading Condition Codes

• SetX instructions
– set single byte based on combinations of condition codes

SetX Condition Description
sete Equal / Zero
setne Not Equal / Not Zero
sets Negative
setns Nonnegative
setg Greater (Signed)
setge Greater or Equal (Signed)
setl Less (Signed)
setle Less or Equal (Signed)
seta Above (unsigned)
setb Below (unsigned)

ZF
~ZF
SF
~SF
~(SF^OF)&~ZF
~(SF^OF)
(SF^OF)
(SF^OF)|ZF
~CF&~ZF
CF

Supplied by CMU, but converted to x86-64.

Recall that the first argument to a function is passed in %rdi (%edi) and the second in
%rsi (%esi).

CS33 Intro to Computer Systems XI–29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

cmpl %esi, %edi # compare x : y
setg %al # %al = x > y
movzbl %al, %eax # zero rest of %eax/%rax

Reading Condition Codes (Cont.)
• SetX instructions:
– set single byte based on combination of

condition codes
• Uses byte registers
– does not alter remaining 7 bytes
– typically use movzbl to finish job

int gt(int x, int y)
{
 return x > y;
}

Body

%al%ah%eax%rax

Supplied by CMU.

See the notes for slide 28.

CS33 Intro to Computer Systems XI–30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Jumping

• jX instructions
– Jump to different part of program depending on condition codes

jX Condition Description
jmp 1 Unconditional
je ZF Equal / Zero
jne ~ZF Not Equal / Not Zero
js SF Negative
jns ~SF Nonnegative
jg ~(SF^OF)&~ZF Greater (Signed)
jge ~(SF^OF) Greater or Equal (Signed)
jl (SF^OF) Less (Signed)
jle (SF^OF)|ZF Less or Equal (Signed)
ja ~CF&~ZF Above (unsigned)
jb CF Below (unsigned)

Supplied by CMU, but converted to x86-64.

The function computes the absolute value of the difference between its two arguments.

CS33 Intro to Computer Systems XI–31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Conditional-Branch Example

int absdiff(int x, int y)
{
 int result;
 if (x > y) {
 result = x-y;
 } else {
 result = y-x;
 }
 return result;
}

absdiff:
 movl %esi, %eax
 cmpl %esi, %edi
 jle .L6
 subl %eax, %edi
 movl %edi, %eax
 jmp .L7
.L6:
 subl %edi, %eax
.L7:
 ret

Body1

Body2b

Body2a

x in %edi
y in %esi

Supplied by CMU, but converted to x86-64.

CS33 Intro to Computer Systems XI–32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Conditional-Branch Example (Cont.)
int goto_ad(int x, int y)
{
 int result;
 if (x <= y) goto Else;
 result = x-y;
 goto Exit;
Else:
 result = y-x;
Exit:
 return result;
}

• C allows “goto” as means of
transferring control
– closer to machine-level

programming style
• Generally considered bad

coding style

absdiff:
 movl %esi, %eax
 cmpl %esi, %edi
 jle .L6
 subl %eax, %edi
 movl %edi, %eax
 jmp .L7
.L6:
 subl %edi, %eax
.L7:
 ret

Body1

Body2b

Body2a

Supplied by CMU.

C's conditional expression, as shown in the slide, is sometimes useful, but often results
in really difficult-to-read code.

(There’s an “International Obfuscated C Code Contest” (IOCCC) that awards prizes to
those who use valid syntax to write the most difficult-to-understand implementations of
simple functions. The conditional expression features prominently in winners’ code. See
https://www.ioccc.org/.)

CS33 Intro to Computer Systems XI–33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

C Code
val = Test ? Then_Expr : Else_Expr;

Goto Version
nt = !Test;

 if (nt) goto Else;
 val = Then_Expr;
 goto Done;
Else:
 val = Else_Expr;
Done:
 . . .

General Conditional-Expression
Translation

– Test is expression returning
integer
== 0 interpreted as false
≠ 0 interpreted as true

– Create separate code regions
for then and else expressions

– Execute appropriate one

val = x>y ? x-y : y-x;

Supplied by CMU.

CS33 Intro to Computer Systems XI–34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

C Code
int pcount_do(unsigned x)
{
 int result = 0;
 do {
 result += x & 0x1;
 x >>= 1;
 } while (x);
 return result;
}

Goto Version
int pcount_do(unsigned x)
{
 int result = 0;
loop:
 result += x & 0x1;
 x >>= 1;
 if (x)
 goto loop;
 return result;
}

“Do-While” Loop Example

• Count number of 1’s in argument x (“popcount”)
• Use conditional branch either to continue looping or

to exit loop

Supplied by CMU.

Note that the condition codes are set as part of the execution of the shrl instruction.

CS33 Intro to Computer Systems XI–35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Goto Version
“Do-While” Loop Compilation

Registers:
%edi x
%eax result

movl $0, %eax # result = 0
.L2: # loop:
 movl %edi, %ecx
 andl $1, %ecx # t = x & 1
 addl %ecx, %eax # result += t
 shrl %edi # x >>= 1
 jne .L2 # if !0, goto loop

int pcount_do(unsigned x) {
 int result = 0;
loop:
 result += x & 0x1;
 x >>= 1;
 if (x)
 goto loop;
 return result;
}

Supplied by CMU.

CS33 Intro to Computer Systems XI–36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

C Code
do
 Body
 while (Test);

Goto Version
loop:
 Body
 if (Test)
 goto loop

General “Do-While” Translation

• Body:

• Test returns integer
= 0 interpreted as false
≠ 0 interpreted as true

{
 Statement1;
 Statement2;
 …
 Statementn;
}

Supplied by CMU.

CS33 Intro to Computer Systems XI–37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

C Code Goto Version

“While” Loop Example

• Is this code equivalent to the do-while version?
– must jump out of loop if test fails

int pcount_while(unsigned x) {
 int result = 0;
 while (x) {
 result += x & 0x1;
 x >>= 1;
 }
 return result;
}

int pcount_do(unsigned x) {
 int result = 0;
 if (!x) goto done;
loop:
 result += x & 0x1;
 x >>= 1;
 if (x)
 goto loop;
done:
 return result;
}

Supplied by CMU.

CS33 Intro to Computer Systems XI–38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

While version
while (Test)
 Body

Do-While Version
if (!Test)

 goto done;
 do
 Body
 while(Test);
done:

General “While” Translation

Goto Version
if (!Test)

 goto done;
loop:
 Body
 if (Test)
 goto loop;
done:

Supplied by CMU.

CS33 Intro to Computer Systems XI–39 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

C Code

“For” Loop Example

• Is this code equivalent to other versions?

#define WSIZE 8*sizeof(int)
int pcount_for(unsigned x) {
 int i;
 int result = 0;
 for (i = 0; i < WSIZE; i++) {
 unsigned mask = 1 << i;
 result += (x & mask) != 0;
 }
 return result;
}

Supplied by CMU.

CS33 Intro to Computer Systems XI–40 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

“For” Loop Form

for (Init; Test; Update)

 Body

General Form

for (i = 0; i < WSIZE; i++) {
 unsigned mask = 1 << i;
 result += (x & mask) != 0;
}

i = 0

i < WSIZE

i++

{
 unsigned mask = 1 << i;
 result += (x & mask) != 0;
}

Init

Test

Update

Body

Supplied by CMU.

CS33 Intro to Computer Systems XI–41 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

“For” Loop à While Loop

for (Init; Test; Update)

 Body

For Version

Init;

while (Test) {

 Body

 Update;
}

While Version

Supplied by CMU.

CS33 Intro to Computer Systems XI–42 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

“For” Loop à … à Goto

for (Init; Test; Update)
 Body

For Version

Init;
while (Test) {
 Body
 Update;
}

While Version

Init;
 if (!Test)
 goto done;
loop:
 Body
 Update
 if (Test)
 goto loop;
done:

Init;
 if (!Test)
 goto done;
 do
 Body
 Update
 while(Test);
done:

Supplied by CMU.

CS33 Intro to Computer Systems XI–43 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

C Code

“For” Loop Conversion Example

Initial test can be optimized away

#define WSIZE 8*sizeof(int)
int pcount_for(unsigned x) {
 int i;
 int result = 0;
 for (i = 0; i < WSIZE; i++) {
 unsigned mask = 1 << i;
 result += (x & mask) != 0;
 }
 return result;
}

Goto Version
int pcount_for_gt(unsigned x) {
 int i;
 int result = 0;
 i = 0;
 if (!(i < WSIZE))
 goto done;
 loop:
 {
 unsigned mask = 1 << i;
 result += (x & mask) != 0;
 }
 i++;
 if (i < WSIZE)
 goto loop;
 done:
 return result;
}

Init

!Test

Body

Update
Test

