
Most of the slides in this lecture are either from or adapted from slides provided by the
authors of the textbook “Computer Systems: A Programmer’s Perspective,” 2nd Edition
and are provided from the website of Carnegie-Mellon University, course 15-213, taught
by Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated
“Supplied by CMU” in the notes section of the slides.

CS33 Intro to Computer Systems XV–1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Architecture and Optimization (2)

Supplied by CMU.

CS33 Intro to Computer Systems XV–2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Limitations of Optimizing Compilers

• Operate under fundamental constraint
– must not cause any change in program behavior
– often prevents it from making optimizations that would

only affect behavior under pathological conditions
• Most analysis is performed only within functions

– whole-program analysis is too expensive in most cases
• Most analysis is based only on static information

– compiler has difficulty anticipating run-time inputs

• When in doubt, the compiler must be conservative

Supplied by CMU.

In this example, we think of a as being a pointer to a matrix and we’re copying array b
into one row of a.

CS33 Intro to Computer Systems XV–3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Generally Useful Optimizations

• Optimizations that you or the compiler should do
regardless of processor / compiler

• Code Motion
– reduce frequency with which computation performed, if it

will always produce same result
» especially moving code out of loop

long j;
 long ni = n*i;
 for (j = 0; j < n; j++)
 a[ni+j] = b[j];

void set_row(long *a, long *b,
 long i, long n){
 long j;
 for (j = 0; j < n; j++)
 a[n*i+j] = b[j];
}

Supplied by CMU.

gcc does optimizations of the sort shown here.

CS33 Intro to Computer Systems XV–4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Reduction in Strength

• Replace costly operation with simpler one
• Shift, add instead of multiply or divide

16*x --> x << 4
– utility is machine-dependent
– depends on cost of multiply or divide instruction

» on some Intel processors, multiplies are 3x longer than adds

• Recognize sequence of products

for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 a[n*i + j] = b[j];

int ni = 0;
for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++)
 a[ni + j] = b[j];
 ni += n;
}

Supplied by CMU.

gcc doesn’t always figure out the best way to compile code. The code in the lower-left box
is what gcc produced for the code in the upper left box. On the right is a much better
version that was done by hand. (The C code was modified by hand; gcc then produced
the better assembly code.)

CS33 Intro to Computer Systems XV–5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Share Common Subexpressions
• Reuse portions of expressions
• Compilers often not very sophisticated in exploiting arithmetic

properties

/* Sum neighbors of i,j */
up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;

long inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;

3 multiplications: i*n, (i–1)*n, (i+1)*n 1 multiplication: i*n

leaq 1(%rsi), %rax # i+1
leaq -1(%rsi), %r8 # i-1
imulq %rcx, %rsi # i*n
imulq %rcx, %rax # (i+1)*n
imulq %rcx, %r8 # (i-1)*n
addq %rdx, %rsi # i*n+j
addq %rdx, %rax # (i+1)*n+j
addq %rdx, %r8 # (i-1)*n+j

imulq %rcx, %rsi # i*n
addq %rdx, %rsi # i*n+j
movq %rsi, %rax # i*n+j
subq %rcx, %rax # i*n+j-n
leaq (%rsi,%rcx), %rcx # i*n+j+n

CS33 Intro to Computer Systems XV–6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1

The fastest means for evaluating
n*n + 2*n + 1

requires exactly:
a) 2 multiplies and 2 additions
b) three additions
c) one multiply and two additions
d) one multiply and one addition

Hint: remember high-school algebra

Supplied by CMU.

Note that the expression (‘A’ - ‘a’) is a constant and is probably computed by the
compiler itself.

CS33 Intro to Computer Systems XV–7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Optimization Blocker: Function Calls

• Function to convert string to lower case

void lower(char *s){
 int i;
 for (i = 0; i < strlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

Supplied by CMU.

CS33 Intro to Computer Systems XV–8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Lower Case Conversion Performance

• Time quadruples when string length doubles
• Quadratic performance

0

20

40

60

80

100

120

140

160

180

200

0 100000 200000 300000 400000 500000

C
PU

 s
ec

on
ds

String length

lower

Supplied by CMU.

CS33 Intro to Computer Systems XV–9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Convert Loop To Goto Form

• strlen executed every iteration

void lower(char *s){
 int i = 0;
 if (i >= strlen(s))
 goto done;
 loop:
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
 i++;
 if (i < strlen(s))
 goto loop;
 done:
}

Supplied by CMU.

CS33 Intro to Computer Systems XV–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Strlen

• strlen performance
– only way to determine length of string is to scan its entire length,

looking for null character
• O(N) performance

– N calls to strlen
– overall O(N2) performance

size_t strlen(const char *s){
 size_t length = 0;
 while (*s != '\0') {
 s++;
 length++;
 }
 return length;
}

Supplied by CMU.

CS33 Intro to Computer Systems XV–11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Improving Performance

• Move call to strlen outside of loop
– since result does not change from one iteration to another
– form of code motion

void lower2(char *s){
 int i;
 int len = strlen(s);
 for (i = 0; i < len; i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

Supplied by CMU.

The plot of lower2’s performance looks flat (constant time), but it’s actually linear – the
slope is too small to appear non-zero in this plot.

CS33 Intro to Computer Systems XV–12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Lower-Case Conversion Performance

• Time doubles when string-length doubles
– linear performance of lower2

0

20

40

60

80

100

120

140

160

180

200

0 100000 200000 300000 400000 500000

C
PU

 s
ec

on
ds

String length

lower

lower2

Supplied by CMU.

CS33 Intro to Computer Systems XV–13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Optimization Blocker: Function Calls
• Why couldn’t compiler move strlen out of inner loop?

– function may have side effects
» alters global state each time called

– function may not return same value for given arguments
» depends on other parts of global state
» function lower could interact with strlen

• Warning:
– compiler treats function call as a black box
– weak optimizations near them

• Remedy:
– do your own code motion

int lencnt = 0;
size_t strlen(const char *s){
 size_t length = 0;
 while (*s != '\0') {
 s++; length++;
 }
 lencnt += length;
 return length;
}

Based on a slide supplied by CMU.

The issue here is whether it's really necessary to update the memory holding b[i] on
every iteration of the inner for loop. Couldn't the value of b[i] be put in a register,
updated there, then written to memory after the loop completes? Keep in mind that
storing to memory is much more time-intensive than storing to a register.

CS33 Intro to Computer Systems XV–14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Memory Matters

• Code updates b[i] (in memory) on every iteration
• Why couldn’t compiler optimize this away?

sum_rows1 inner loop
.L3:
 movq (%r8,%rax,8), %rcx # rcx = a[i][j]
 addq %rcx, (%rdx) # b[i] += rcx
 addq $1, %rax # j++
 cmpq %rax, %rdi # if i<n
 jne .L3 # goto .L3

/* Sum rows of n X n matrix a
 and store result in vector b */
void sum_rows1(long n, long a[][n], long *b) {
 long i, j;

for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)

b[i] += a[i][j];
 }
}

Supplied by CMU, updated for current gcc.

CS33 Intro to Computer Systems XV–15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Memory Aliasing

• Code updates b[i] on every iteration
• Must consider possibility that these updates will affect program behavior

/* Sum rows of n X n matrix a
 and store result in vector b */
void sum_rows1(long n, long a[][n], long *b) {
 long i, j;

for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)

b[i] += a[i][j];
 }
}

int A[3][3] =
 {{ 0, 1, 2},
 { 4, 8, 16},
 {32, 64, 128}};

int *B = &A[1][0];

sum_rows1(3, A, B);

i = 0: [3, 8, 16]

init: [4, 8, 16]

i = 1: [3, 22, 16]

i = 2: [3, 22, 224]

Value of B:

Supplied by CMU.

Note that the programmer is implicitly assuming that the locations pointed to by a and b
don't overlap.

CS33 Intro to Computer Systems XV–16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Removing Aliasing

• No need to store intermediate results

sum_rows2 inner loop
.L4:
 addq (%r8, %rax, 8), %rcx
 addq $1, %rax
 cmpq %rax, %rdi
 jne .L4

/* Sum rows of n X n matrix a
 and store result in vector b */
void sum_rows1(long n, long a[][n], long *b) {
 long i, j;

for (i = 0; i < n; i++) {
 long val = 0;
 for (j = 0; j < n; j++)

val += a[i][j];
 b[i] = val;
 }
}

Supplied by CMU.

CS33 Intro to Computer Systems XV–17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Optimization Blocker: Memory Aliasing

• Aliasing
– two different memory references specify single

location
– easy to have happen in C
» since allowed to do address arithmetic
» direct access to storage structures

– get in habit of introducing local variables
» accumulating within loops
» your way of telling compiler not to check for aliasing

CS33 Intro to Computer Systems XV–18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

C99 to the Rescue

• New attribute
– restrict

» applied to a pointer, tells the compiler that the object
pointed to will be accessed only via this pointer

» compiler thus doesn’t have to worry about aliasing
» but the programmer does ...
» syntax

int *restrict pointer;

CS33 Intro to Computer Systems XV–19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Pointers and Arrays

• long a[][n]
• a is a 2-D array of longs, the size of each row is n

• long (*c)[n]
• c is a pointer to a 1-D array of size n

• a and c are of the same type

Note: we must give gcc the flag “-std=gnu99” for this to be compiled.

Observe that

long (*a)[n]

declares a to be a pointer to an array of n longs.

Thus

long (*restrict a)[n]

declares a to be a restricted pointer to an array of n longs

CS33 Intro to Computer Systems XV–20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Memory Matters, Fixed

• Code doesn’t update b[i] on every iteration

sum_rows1 inner loop
.L3:
 addq (%rcx,%rax,8), %rdx
 addq $1, %rax
 cmpq %rax, %rdi
 jne .L3

/* Sum rows of n X n matrix a
 and store result in vector b */
void sum_rows1(long n, long (*restrict a)[n], long *restrict b) {
 long i, j;

for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)

b[i] += a[i][j];
 }
}

Supplied by CMU.

CS33 Intro to Computer Systems XV–21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Exploiting Instruction-Level Parallelism

• Need general understanding of modern
processor design
– hardware can execute multiple instructions in

parallel
• Performance limited by data dependencies
• Simple transformations can have dramatic

performance improvement
– compilers often cannot make these transformations
– lack of associativity and distributivity in floating-

point arithmetic

Supplied by CMU.

Note that get_vec_element not only does an array lookup, but also does bounds
checking.

CS33 Intro to Computer Systems XV–22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Benchmark Example: Datatype for Vectors

/* data structure for vectors */
typedef struct{
 int len;
 data_t *data;
} vec_t, *vec_ptr_t;

/* retrieve vector element and store at val */
int get_vec_element(vec_ptr_t v, int idx, data_t *val){
 if (idx < 0 || idx >= v->len)
 return 0;
 *val = v->data[idx];
 return 1;
}

/* return length of vector */
int vec_length(vec_ptr_t v) {
 return v->len;
}

len
data

0 1 len-1

Supplied by CMU.

CS33 Intro to Computer Systems XV–23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Benchmark Computation

• Data Types
– use different declarations

for data_t
» int
» float
» double

• Operations
– use different definitions of
OP and IDENT
» +, 0
» *, 1

void combine1(vec_ptr_t v, data_t *dest){
 long int i;
 *dest = IDENT;
 for (i = 0; i < vec_length(v); i++) {
 data_t val;
 get_vec_element(v, i, &val);
 *dest = *dest OP val;
 }
}

Compute sum or
product of vector
elements

Supplied by CMU.

A cycle is a measure of processor time, often referred to as a clock cycle. Processors
are driven by a clock, running at a certain frequency, say 10 GHz (10*230 cycles per
second). In this case, the length of a cycle is the period of the clock (the reciprocal of its
frequency -- .1*2-30 seconds).

CS33 Intro to Computer Systems XV–24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Cycles Per Element (CPE)
• Convenient way to express performance of program that

operates on vectors or lists
• Length = n
• T = CPE*n + Overhead

– CPE is slope of line

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200

Cy
cl

es

n = Number of elements

vsum1: Slope = 4.0

vsum2: Slope = 3.5

Supplied by CMU.

The times given in the table are in cycles/element. The unoptimized code was compiled
with the –O0 flag. The code would most likely be faster if compiled with the –O2 flag, but
the purpose of these slides is to figure out exactly what can make it run faster.

CS33 Intro to Computer Systems XV–25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Benchmark Performance
void combine1(vec_ptr_t v, data_t *dest){
 long int i;
 *dest = IDENT;
 for (i = 0; i < vec_length(v); i++) {
 data_t val;
 get_vec_element(v, i, &val);
 *dest = *dest OP val;
 }
}

Compute sum or
product of vector
elements

Method Integer Double FP
Operation Add Mult Add Mult
Combine1
unoptimized

29.0 29.2 27.4 27.9

12.0 12.0 12.0 13.0Combine1 –O1

Supplied by CMU.

Since the result of calling vec_length never changes, for the given vector v, there’s no
point to calling it in every iteration of the loop. So, we move it out of the loop and call it
just once, with dramatic improvement of performance.

CS33 Intro to Computer Systems XV–26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Move vec_length
void combine2(vec_ptr_t v, data_t *dest){
 long int i;
 long int length = vec_length(v);
 *dest = IDENT;
 for (i = 0; i < length; i++) {
 data_t val;
 get_vec_element(v, i, &val);
 *dest = *dest OP val;
 }
}

Method Integer Double FP
Operation Add Mult Add Mult
Combine1
unoptimized

29.0 29.2 27.4 27.9

Combine1 –O1 12.0 12.0 12.0 13.0
Combine2 8.03 8.09 10.09 12.08

Supplied by CMU.

Since bounds checking isn’t necessary, we replace get_vec_element with a simple array
lookup.

CS33 Intro to Computer Systems XV–27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Eliminate Function Calls
void combine3(vec_ptr_t v, data_t *dest){
 long int i;
 long int length = vec_length(v);
 data_t *data = get_vec_start(v);
 *dest = IDENT;
 for (i = 0; i < length; i++) {
 *dest = *dest OP data[i];
 }
}

Method Integer Double FP
Operation Add Mult Add Mult
Combine2 8.03 8.09 10.09 12.08
Combine3 6.01 8.01 10.01 12.02

data_t *get_vec_start(
 vec_ptr v) {
 return v->data;
}

Supplied by CMU.

Finally, we recognize that we don’t need to update *dest on each iteration, but only
when we’re done.

CS33 Intro to Computer Systems XV–28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Eliminate Unneeded Memory
References

void combine4(vec_ptr_t v, data_t *dest){
 int i;
 int length = vec_length(v);
 data_t *d = get_vec_start(v);
 data_t t = IDENT;
 for (i = 0; i < length; i++)
 t = t OP d[i];
 *dest = t;
}

Method Integer Double FP
Operation Add Mult Add Mult
Combine1 –O1 12.0 12.0 12.0 13.0
Combine4 2.0 3.0 3.0 5.0

CS33 Intro to Computer Systems XV–29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Not a Quiz

Combine4 is pretty fast; we’ve done all the
“obvious” optimizations. How much faster will
we be able to make it? (Hint: it involves taking
advantage of pipelining and multiple functional
units on the chip.)

a) 1× (it’s already as fast as possible)
b) 2× – 4×
c) 16× – 64×

d) 128× – ∞×

Supplied by CMU.

CS33 Intro to Computer Systems XV–30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Modern CPU Design

Execution

Functional
Units

Instruction Control

Integer/
Branch

FP
Add

FP
Mult/Div

Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction OK?

DataData

Addr. Addr.

General
Integer

Operation Results

Retirement
Unit

Register
File

Register Updates

CS33 Intro to Computer Systems XV–31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Multiple Operations per Instruction

• addq %rax, %rdx
– a single operation

• addq %rax, 8(%rdx)
– three operations

» load value from memory
» add to it the contents of %rax
» store result in memory

CS33 Intro to Computer Systems XV–32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Instruction-Level Parallelism

• addq 8(%rax), %rax
addq %rbx, %rdx
– can be executed simultaneously: completely

independent
• addq 8(%rax), %rbx
addq %rbx, %rdx
– can also be executed simultaneously, but some

coordination is required

Note that the first three instructions are floating-point instructions, and %xmm0 is a
floating-point register.

CS33 Intro to Computer Systems XV–33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Out-of-Order Execution

• movss (%rbp), %xmm0
mulss (%rax, %rdx, 4), %xmm0
movss %xmm0, (%rbp)
addq %r8, %r9
imulq %rcx, %r12
addq $1, %rdx

these can be
executed without
waiting for the first
three to finish

CS33 Intro to Computer Systems XV–34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Speculative Execution

80489f3: movl $0x1,%ecx

80489f8: xorq %rdx,%rdx
80489fa: cmpq %rsi,%rdx

80489fc: jnl 8048a25
80489fe: movl %esi,%edi

8048a00: imull (%rax,%rdx,4),%ecx
perhaps execute
these instructions

Supplied by CMU.

“Haswell” is Intel’s code name for relatively recent versions of its Core I7 and Core I5
processor design. Most of the computers in Brown CS employ Core I5 processors.

While Apple’s M1 and M2 processors have a different architecture, producing code for
them involves similar concerns as producing code for Haswell processors.

CS33 Intro to Computer Systems XV–35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Haswell CPU
• Functional Units

1) Integer arithmetic, floating-point multiplication, integer and
floating-point division, branches

2) Integer arithmetic, floating-point addition, integer and floating-
point multiplication

3) Load, address computation
4) Load, address computation
5) Store
6) Integer arithmetic
7) Integer arithmetic, branches
8) Store, address computation

Supplied by CMU.

These figures are for those cases in which the operands are either in registers or are
immediate. For the other cases, additional time is required to load operands from
memory or store them to memory.

"Cycles/Issue" is the number of clock cycles that must occur from the start of execution
of one instruction to the start of execution to the next. The reciprocal of this value is the
throughput: the number of instructions (typically a fraction) that can be completed per
cycle.

"Capacity" is the number of functional units that can do the indicated operations.

The figures for load and store assume the data is coming from/going to the data cache.
Much more time is required if the source or destination is RAM.

The latency for stores is a bit complicated – we might discuss it in a later lecture.

CS33 Intro to Computer Systems XV–36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Haswell CPU
• Instruction characteristics

Instruction Latency Cycles/Issue Capacity
Integer Add 1 1 4
Integer Multiply 3 1 1
Integer/Long Divide 3-30 3-30 1
Single/Double FP Add 3 1 1
Single/Double FP Multiply 5 1 2
Single/Double FP Divide 3-15 3-15 1

Load 4 1 2
Store - 1 2

Derived from a slide provided by CMU.

We assume that the source and destination are either immediate (source only) or
registers. Thus, any bottlenecks due to memory access do not arise.

Each integer add requires one clock cycle of latency. It's also the case that, for each
functional unit doing integer addition, the time required between add instructions is one
clock cycle. However, since there are four such functional units, all four can be kept
busy with integer add instructions and thus the aggregate throughput can be as good as
one integer add instruction completing, on average, every .25 clock cycles, for a
throughput of 4 instructions/cycle.

Each integer multiply requires three clock cycles. But since a new multiply instruction
can be started every clock cycle (i.e., they can be pipelined), the aggregate throughput
can be as good as one integer multiply completing every clock cycle.

Each floating point multiply requires five clock cycles, but they can be pipelined with
one starting every clock cycle. Since there are two functional units that can perform
floating point multiply, the aggregate throughput can be as good as one completing every
.5 clock cycles, for a throughput of 2 instructions/cycle.

CS33 Intro to Computer Systems XV–37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Haswell CPU Performance Bounds

Integer Floating Point
 + * + *
Latency 1.00 3.00 3.00 5.00
Throughput 4.00 1.00 1.00 2.00

Supplied by CMU.

These numbers are for the Haswell CPU. The row labelled "Combine4" gives the actual
time, in clock cycles, taken by each execution of the loop. The row labelled "Latency
bound" gives the time required for the arithmetic instruction (integer add or multiply,
double-precision floating-point add or multiply) in each execution of the loop. The last
row, "Throughput bound", gives the time required for the arithmetic instructions if they
can be executed without delays by the multiple execution units – i.e., there are no data
hazards (as explained in the previous lecture).

CS33 Intro to Computer Systems XV–38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

x86-64 Compilation of Combine4

• Inner loop (case: SP floating-point multiply)

.L519: # Loop:
 mullss (%rax,%rdx,4), %xmm0 # t = t * d[i]
 addq $1, %rdx # i++
 cmpq %rdx, %rbp # Compare length:i
 jg .L519 # If >, goto Loop

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.00 3.00 5.00
Latency bound 1.00 3.00 3.00 5.0

Throughput
bound

0.25 1.00 1.00 0.50

This is Figure 5.13 of Bryant and O’Hallaron. It shows the code for the single-precision
floating-point version of our example.

CS33 Intro to Computer Systems XV–39 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Inner Loop

%rax %xmm0%rdx%rbp

load
mul
add
cmp

jg

%rax %rdx%rbp

mulss (%rax,%rdx,4), %xmm0

addq $1,%rdx

cmpq %rdx,%rbp

jg loop

%xmm0

These are Figures 5.14 a and b of Bryant and O’Hallaron.

Since the values in %rax and %rbp don't change during the execution of the inner loop,
they're not critical to the scheduling and timing of the instructions. Assuming the
branch is taken, the cmp and jg instructions also aren't a factor in determining the
timing of the instructions. We focus on what's shown in the righthand portion of the
slide.

CS33 Intro to Computer Systems XV–40 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Data-Flow Graphs of Inner Loop

%xmm0 %rdx

load

mul add

cmp

jg

%rdx%xmm0

%rax %rbp

%xmm0 %rdx

%rdx%xmm0

data[i]
load

mul add

Here we modify the graph of the previous slide to show the relative times required of
mul, load, and add.

CS33 Intro to Computer Systems XV–41 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Relative Execution Times
%xmm0 %rdx

%rdx%xmm0

data[i]

load

mul

add

This is Figure 5.15 of Bryant and O’Hallaron.

CS33 Intro to Computer Systems XV–42 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Data Flow Over
Multiple Iterations

data[0]
load

mul add

data[1]
load

mul add

data[n-2]
load

mul add

•
•
•

•
•
•

•
•
•

Critical path

data[n-1]
load

mul add

Without pipelining, the data flow would appear as shown in the slide.

CS33 Intro to Computer Systems XV–43 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Pipelined Data-Flow Over Multiple
Iterations

load

mul

mul

add

load

mul

add

add

load

The loads depend only on the computation of the array index, which is quickly done by
addition units. Thus, the loads can be pipelined.
It’s clear that the multiplies form the critical path, since they use the results of the
previous multiplies.

CS33 Intro to Computer Systems XV–44 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Pipelined Data-Flow Over Multiple
Iterations

load

mul

mul

mul

add

load

add

add

load

The loads depend only on the computation of the array index, which is quickly done by
addition units. Thus, the loads can be pipelined.
It’s clear that the multiplies form the critical path, since they use the results of the
previous multiplies.

CS33 Intro to Computer Systems XV–45 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Pipelined Data-Flow Over Multiple
Iterations

load

mul

mul

mul

add

load

add

add

load

Supplied by CMU.

Since the multiplies form the critical path, here we focus only on them. In what's shown
here, only one multiply can be done at a time, since the result of the one multiply is
needed for the next.

CS33 Intro to Computer Systems XV–46 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Combine4 = Serial Computation (OP = *)
• Computation (length=8)

 ((((((((1 * d[0]) * d[1]) * d[2]) * d[3])
* d[4]) * d[5]) * d[6]) * d[7])

• Sequential dependence
– performance: determined by latency of OP

*

*

1d0

d1

*

d2

*

d3

*

d4

*

d5

*

d6

*

d7

Supplied by CMU.

CS33 Intro to Computer Systems XV–47 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Loop Unrolling

• Perform 2x more useful work per iteration

void unroll2x(vec_ptr_t v, data_t *dest)
{
 int length = vec_length(v);
 int limit = length-1;
 data_t *d = get_vec_start(v);
 data_t x = IDENT;
 int i;
 /* Combine 2 elements at a time */
 for (i = 0; i < limit; i+=2) {
 x = (x OP d[i]) OP d[i+1];
 }
 /* Finish any remaining elements */
 for (; i < length; i++) {
 x = x OP d[i];
 }
 *dest = x;
}

Supplied by CMU.

CS33 Intro to Computer Systems XV–48 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Effect of Loop Unrolling

• Helps integer add
– reduces loop overhead

• Others don’t improve. Why?
– still sequential dependency

x = (x OP d[i]) OP d[i+1];

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.00 3.00 5.00
Unroll 2x 1.01 3.00 3.00 5.00
Latency bound 1.0 3.0 3.0 5.0
Throughput
bound

0.25 1.0 1.0 0.5

Supplied by CMU.

CS33 Intro to Computer Systems XV–49 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Loop Unrolling with Reassociation

• Can this change the result of the computation?
• Yes, for FP. Why?

void unroll2xra(vec_ptr_t v, data_t *dest)
{
 int length = vec_length(v);
 int limit = length-1;
 data_t *d = get_vec_start(v);
 data_t x = IDENT;
 int i;
 /* Combine 2 elements at a time */
 for (i = 0; i < limit; i+=2) {
 x = x OP (d[i] OP d[i+1]);
 }
 /* Finish any remaining elements */
 for (; i < length; i++) {
 x = x OP d[i];
 }
 *dest = x;
}

x = (x OP d[i]) OP d[i+1];
Compare to before

Supplied by CMU.

How much time is required to compute the products shown in the slide? The
multiplications in the upper right of the tree, directly involving the di, could all be done
at once, since there are no dependencies; thus, computing them can be done in D
cycles, where D is the latency required for multiply. This assumes we have a sufficient
number of functional units to do this, thus this is a lower bound. The multiplications in
the lower left must be done sequentially, since each depends on the previous; thus,
computing them requires (N/2)*D cycles. Since first of the top right multiplies must be
completed before the bottom left multiplies can start, the overall performance has a
lower bound of (N/2 + 1)*D.

CS33 Intro to Computer Systems XV–50 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Reassociated Computation

• What changed:
– ops in the next iteration can

be started early (no
dependency)

• Overall Performance
– N elements, D cycles

latency/op
– should be (N/2+1)*D cycles:

CPE = D/2
– measured CPE slightly

worse for integer addition
(there are other things going
on)

*

*

1

*

*

*

d1d0

*

d3d2

*

d5d4

*

d7d6

x = x OP (d[i] OP d[i+1]);

Supplied by CMU.

CS33 Intro to Computer Systems XV–51 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Effect of Reassociation

• Nearly 2x speedup for int *, FP +, FP *
– reason: breaks sequential dependency

x = x OP (d[i] OP d[i+1]);

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.00 3.00 5.00
Unroll 2x 1.01 3.00 3.00 5.00
Unroll 2x,
reassociate

1.01 1.51 1.51 2.51

Latency bound 1.0 3.0 3.0 5.0
Throughput
bound

.25 1.0 1.0 .5

Supplied by CMU.

Here one "accumulator" (x0) is summing the array elements with even indices, the other
(x1) is summing array elements with odd indices.

CS33 Intro to Computer Systems XV–52 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Loop Unrolling with Separate
Accumulators

• Different form of reassociation

void unroll2xp2x(vec_ptr_t v, data_t *dest)
{
 int length = vec_length(v);
 int limit = length-1;
 data_t *d = get_vec_start(v);
 data_t x0 = IDENT;
 data_t x1 = IDENT;
 int i;
 /* Combine 2 elements at a time */
 for (i = 0; i < limit; i+=2) {
 x0 = x0 OP d[i];
 x1 = x1 OP d[i+1];
 }
 /* Finish any remaining elements */
 for (; i < length; i++) {
 x0 = x0 OP d[i];
 }
 *dest = x0 OP x1;
}

Supplied by CMU.

CS33 Intro to Computer Systems XV–53 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Effect of Separate Accumulators

• 2x speedup (over unroll 2x) for int *, FP +, FP *
– breaks sequential dependency in a “cleaner,” more obvious way

x0 = x0 OP d[i];
 x1 = x1 OP d[i+1];

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.00 3.00 5.00
Unroll 2x 1.01 3.00 3.00 5.00
Unroll 2x,
reassociate

1.01 1.51 1.51 2.01

Unroll 2x parallel 2x .81 1.51 1.51 2.51
Latency bound 1.0 3.0 3.0 5.0
Throughput bound .25 1.0 1.0 .5

Supplied by CMU.

CS33 Intro to Computer Systems XV–54 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Separate Accumulators

*

*

1d1

d3

*

d5

*

d7

*

*

*

1d0

d2

*

d4

*

d6

x0 = x0 OP d[i];
 x1 = x1 OP d[i+1];

• What changed:
• two independent “streams” of

operations

• Overall Performance
• N elements, D cycles latency/op
• should be (N/2+1)*D cycles:

CPE = D/2
• Integer addition improved, but

not yet at predicted value

What Now?

CS33 Intro to Computer Systems XV–55 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2

Weʼre making progress. With two accumulators
we get a two-fold speedup. With three
accumulators, we can get a three-fold speedup.
How much better performance can we expect if
we add even more accumulators?

a) It keeps on getting better as we add more
and more accumulators

b) Itʼs limited by the latency bound
c) Itʼs limited by the throughput bound
d) Itʼs limited by something else

This is Figure 5.30 from the textbook.

CS33 Intro to Computer Systems XV–56 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Performance

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

C
PE

Unrolling factor k

double *

double +

long *

long +

• K-way loop unrolling with K accumulators
• limited by number and throughput of functional units

Based on a slide supplied by CMU.

CS33 Intro to Computer Systems XV–57 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Achievable Performance
Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.0 3.0 5.0
Achievable scalar .52 1.01 1.01 .54
Latency bound 1.00 3.00 3.00 5.00
Throughput bound .25 1.00 1.00 .5

Based on a slide supplied by CMU.

SSE stands for “streaming SIMD extensions”. SIMD stands for “single instruction
multiple data” – these are instructions that operate on vectors.

CS33 Intro to Computer Systems XV–58 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Using Vector Instructions

• Make use of SSE Instructions
– parallel operations on multiple data elements

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.0 3.0 5.0
Achievable Scalar .52 1.01 1.01 .54
Latency bound 1.00 3.00 3.00 5.00
Throughput bound .25 1.00 1.00 .5
Achievable Vector .05 .24 .25 .16
Vector throughput
bound

.06 .12 .25 .12

One way of improving the utilization of the functional units of a processor is
hyperthreading. The processor supports multiple instruction streams ("hyper threads"),
each with its own instruction control. But all the instruction streams share the one set
of functional units.

CS33 Intro to Computer Systems XV–59 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Hyper Threading

Execution

Functional
Units

Integer/
Branch

FP
Add

FP
Mult/Div

Load Store

Data
Cache

DataData

Addr. Addr.

General
Integer

Operation Results

Instruction Control

Instruction
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Retirement
Unit

Register
File

Instruction Control

Instruction
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Retirement
Unit

Register
File

Going a step further, one can pack multiple complete processors onto one chip. Each
processor is known as a core and can execute instructions independently of the other
cores (each has its private set of functional units). In addition to each core having its
own instruction and data cache, there are caches shared with the other cores on the
chip. We discuss this in more detail in a subsequent lecture.

In many of today's processor chips, hyperthreading is combined with multiple cores.
Thus, for example, a chip might have four cores each with four hyperthreads. Thus, the
chip might handle 16 instruction streams.

CS33 Intro to Computer Systems XV–60 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Chip

Multiple Cores

Execution

Functional
Units

Instruction Control

Integer/
Branch

FP
Add

FP
Mult/Div Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

DataData

Addr. Addr.

General
Integer

Operation Results

Retirement
Unit

Register
File

Execution

Functional
Units

Instruction Control

Integer/
Branch

FP
Add

FP
Mult/Div Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

DataData

Addr. Addr.

General
Integer

Operation Results

Retirement
Unit

Register
File

More
CacheOther Stuff Other Stuff

