

Most of the slides in this lecture are either from or adapted from slides provided by the authors of the textbook "Computer Systems: A Programmer's Perspective," 2nd Edition and are provided from the website of Carnegie-Mellon University, course 15-213, taught by Randy Bryant and David O'Hallaron in Fall 2010. These slides are indicated "Supplied by CMU" in the notes section of the slides.

Limitations of Optimizing Compilers

- Operate under fundamental constraint
- must not cause any change in program behavior
- often prevents it from making optimizations that would only affect behavior under pathological conditions
- Most analysis is performed only within functions
- whole-program analysis is too expensive in most cases
- Most analysis is based only on static information
- compiler has difficulty anticipating run-time inputs
- When in doubt, the compiler must be conservative

CS33 Intro to Computer Systems XV-2

Supplied by CMU.

Generally Useful Optimizations

- Optimizations that you or the compiler should do regardless of processor / compiler

- Code Motion

- reduce frequency with which computation performed, if it will always produce same result
» especially moving code out of loop

```
void set_row(long *a, long *b,
```

 long í, long \(n\)) \{
 long j;
 for (\(j=0 ; j<n ; j++\))
 \(a[n * i+j]=b[j] ;\)
 \}


```
CS33 Intro to Computer Systems

Supplied by CMU.

In this example, we think of a as being a pointer to a matrix and we're copying array b into one row of a.

\section*{Reduction in Strength}
- Replace costly operation with simpler one
- Shift, add instead of multiply or divide

16*x \(\quad-->\quad x \ll 4\)
- utility is machine-dependent
- depends on cost of multiply or divide instruction
» on some Intel processors, multiplies are \(3 x\) longer than adds
- Recognize sequence of products
for \((i=0 ; i<n ; i++)\)
for \((j=0 ; j<n ; j++)\)
\(a\left[n^{*} i+j\right]=b[j] ;\)
```

int ni = 0;
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++)
a[ni + j] = b[j];
ni += n;
}

```

CS33 Intro to Computer Systems XV-4

Supplied by CMU.
gcc does optimizations of the sort shown here.

\section*{Share Common Subexpressions}
- Reuse portions of expressions
- Compilers often not very sophisticated in exploiting arithmetic properties
```

/* Sum neighbors of i,j */
up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;

```

3 multiplications: \(i^{*} n,(i-1)^{*} n,(i+1)^{*} n\)
\begin{tabular}{|lll|}
\hline leaq & 1 (\%rsi), \%rax & \# i+1 \\
leaq & \(-1(\% r s i), \% r 8\) & \(\#\) i-1 \\
imulq & \(\% r c x, \% r s i\) & \# i*n \\
imulq & \(\% r c x, \% r a x\) & \# (i+1)*n \\
imulq & \(\% r c x, \% r 8\) & \# (i-1)*n \\
addq & \(\% r d x, \% r s i\) & \(\#\) i*n+j \\
addq & \(\% r d x, \% r a x\) & \(\#(i+1) *_{n+j}\) \\
addq & \(\% r d x, \% r 8\) & \(\#\) \\
& & \\
\end{tabular}
```

long inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;

```

1 multiplication: \(i^{*} n\)
\begin{tabular}{|lll|}
\hline imulq & \(\% r c x, \% r s i\) & \(\# i * n\) \\
addq & \(\% r d x, \% r s i\) & \(\# i{ }^{*} n+j\) \\
movq & \(\% r s i, \% r a x\) & \(\# i{ }^{*} n+j\) \\
subq & \(\% r c x, \% r a x\) & \(\# i{ }^{*} n+j-n\) \\
leaq & \((\% r s i, \% r c x), \% r c x \# i * n+j+n\) \\
\hline
\end{tabular}

CS33 Intro to Computer Systems
XV-5

Supplied by CMU.
gcc doesn't always figure out the best way to compile code. The code in the lower-left box is what gcc produced for the code in the upper left box. On the right is a much better version that was done by hand. (The C code was modified by hand; gcc then produced the better assembly code.)

\section*{Quiz 1}

The fastest means for evaluating \(n * n+2 * n+1\)
requires exactly:
a) \(\mathbf{2}\) multiplies and \(\mathbf{2}\) additions
b) three additions
c) one multiply and two additions
d) one multiply and one addition

Hint: remember high-school algebra

\section*{Optimization Blocker: Function Calls}
- Function to convert string to lower case
```

void lower(char *s) {
int i;
for (i = 0; i < strlen(s); i++)
if (s[i] >= 'A' \&\& s[i] <= 'Z')
s[i] -= ('A' - 'a');
}

```

CS33 Intro to Computer Systems XV-7

Supplied by CMU.

Note that the expression (' \(A\) ' - ' \(a\) ') is a constant and is probably computed by the compiler itself.

\section*{Lower Case Conversion Performance}
- Time quadruples when string length doubles
- Quadratic performance


CS33 Intro to Computer Systems XV-8

Supplied by CMU.


Supplied by CMU.

\section*{Strlen}
```

size_t strlen(const char *s){
size_t length = 0;
while (*s != '\0') {
s++;
length++;
}
return length;
}

```
- strlen performance
- only way to determine length of string is to scan its entire length, looking for null character
- O(N) performance
- \(\mathbf{N}\) calls to strlen
- overall \(\mathrm{O}\left(\mathrm{N}^{2}\right)\) performance

CS33 Intro to Computer Systems XV-10

Supplied by CMU.

\section*{Improving Performance}
```

void lower2(char *s) {
int i;
int len = strlen(s);
for (i = 0; i < len; i++)
if (s[i] >= 'A' \&\& s[i] <= 'Z')
s[i] -= ('A' - 'a');
}

```
- Move call to strlen outside of loop
- since result does not change from one iteration to another
- form of code motion

CS33 Intro to Computer Systems

> XV-11

Supplied by CMU.

\section*{Lower-Case Conversion Performance}
- Time doubles when string-length doubles
- linear performance of lower2


Supplied by CMU.

The plot of lower2's performance looks flat (constant time), but it's actually linear - the slope is too small to appear non-zero in this plot.

\section*{Optimization Blocker: Function Calls}
- Why couldn't compiler move strlen out of inner loop?
- function may have side effects
» alters global state each time called
- function may not return same value for given arguments
" depends on other parts of global state
» function lower could interact with strlen
- Warning:
- compiler treats function call as a black box
- weak optimizations near them
- Remedy:
- do your own code motion
```

int lencnt = 0;
size_t strlen(const char *s) {
size_t length = 0;
while (*s != '\0') {
s++; length++;
}
lencnt += length;
return length;
}

```

CS33 Intro to Computer Systems

Supplied by CMU.

\section*{Memory Matters}
```

/* Sum rows of n X n matrix a
and store result in vector b */
void sum_rowsl(long n, long a[][n], long *b) {
long i, j;
for (i = 0; i < n; i++) {
b[i] = 0;
for (j = 0; j < n; j++)
b[i] += a[i][j];
}
}

```
```


sum_rows1 inner loop

.I3:
movq (%r8,%rax,8), %rcx \# rcx = a[i][j]
addq %rcx, (%rdx) \# b[i] += rcx
addq \$1, %rax \# j++
cmpq %rax, %rdi \# if i<n
jne .L3 \# goto .L3

```
- Code updates b[i] (in memory) on every iteration
- Why couldn't compiler optimize this away?

Based on a slide supplied by CMU.

The issue here is whether it's really necessary to update the memory holding \(\mathrm{b}[\mathrm{i}]\) on every iteration of the inner for loop. Couldn't the value of \(\mathrm{b}[\mathrm{i}]\) be put in a register, updated there, then written to memory after the loop completes? Keep in mind that storing to memory is much more time-intensive than storing to a register.

\section*{Memory Aliasing}
```

/* Sum rows of n X n matrix a
and store result in vector b */
void sum rowsl(long n, long a[][n], long *b) {
long i, j;
for (i = 0; i < n; i++) {
b[i] = 0;
for (j = 0; j < n; j++)
b[i] += a[i][j];
}
}

```


Value of \(B\) :
\begin{tabular}{l}
\hline init: \(\quad[4,8,16]\) \\
\hline\(i=0:[3,8,16]\) \\
\hline\(i=1:[3,22,16]\) \\
\hline\(i=2:[3,22,224]\) \\
\hline
\end{tabular}
- Code updates \(\mathrm{b}[\mathrm{i}]\) on every iteration
- Must consider possibility that these updates will affect program behavior
```

CS33 Intro to Computer Systems XV-15

```

Supplied by CMU, updated for current gcc.

\section*{Removing Aliasing}
```

/* Sum rows of n X n matrix a
and store result in vector b */
void sum_rowsl(long n, long a[][n], long *b) {
long i, j;
for (i = 0; i < n; i++) {
long val = 0;
for (j = 0; j < n; j++)
val += a[i][j];
b[i] = val;
}
}

```
\# sum_rows2 inner loop
.L4:
    addq (\%r8, \%rax, 8), \%rcx
    addq \(\$ 1\), \(\% \mathrm{rax}\)
    cmpq \%rax, \%rdi
    jne .L4
- No need to store intermediate results
```

CS33 Intro to Computer Systems XV-16

```

Supplied by CMU.

Note that the programmer is implicitly assuming that the locations pointed to by a and b don't overlap.

\section*{Optimization Blocker: Memory Aliasing}
```

 - Aliasing
 - two different memory references specify single
 location
 - easy to have happen in C
 » since allowed to do address arithmetic
 " direct access to storage structures
 - get in habit of introducing local variables
 " accumulating within loops
 » your way of telling compiler not to check for aliasing
 Supplied by CMU.

C99 to the Rescue

- New attribute
- restrict
» applied to a pointer, tells the compiler that the object pointed to will be accessed only via this pointer
» compiler thus doesn't have to worry about aliasing
» but the programmer does ...
» syntax
int *restrict pointer;

Pointers and Arrays

- long a[][n]
- a is a 2-D array of longs, the size of each row is \mathbf{n}
- long (${ }^{*} \mathrm{C}$) [n]
- \mathbf{c} is a pointer to a 1-D array of size \mathbf{n}
- a and c are of the same type

Memory Matters, Fixed

```
/* Sum rows of n X n matrix a
    and store result in vector b */
void sum_rowsl(long n, long (*restrict a)[n], long *restrict b) {
    long i, j;
    for (i = 0; i < n; i++) {
        b[i] = 0;
        for (j = 0; j < n; j++)
            b[i] += a[i][j];
    }
}
```

```
# sum_rows1 inner loop
.L3:
addq (%rcx,%rax, 8), %rdx
addq $1, %rax
cmpq %rax, %rdi
jne .L3
```

- Code doesn't update b[i] on every iteration

```
CS33 Intro to Computer Systems
XV-20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.
```

Note: we must give gcc the flag "-std=gnu99" for this to be compiled.

Observe that
long (*a) [n]
declares a to be a pointer to an array of n longs.

Thus
long (*restrict a) [n]
declares a to be a restricted pointer to an array of n longs

Exploiting Instruction-Level Parallelism

- Need general understanding of modern processor design
- hardware can execute multiple instructions in parallel
- Performance limited by data dependencies
- Simple transformations can have dramatic performance improvement
- compilers often cannot make these transformations
- lack of associativity and distributivity in floatingpoint arithmetic

> CS33 Intro to Computer Systems XV-21

Supplied by CMU.

Benchmark Example: Datatype for Vectors

```
/* data structure for vectors */
typedef struct{
    int len;
    data_t *data;
} vec_t, *vec_ptr_t;
```



```
/* retrieve vector element and store at val */
int get_vec_element(vec_ptr_t v, int idx, data_t *val) {
    if (idx < 0 || idx >= v->len)
        return 0;
    *val = v->data[idx];
    return 1;
}
/* return length of vector */
int vec_length(vec_ptr_t v) {
    return v->len;
}
```

CS33 Intro to Computer Systems
XV-22

Supplied by CMU.

Note that get_vec_element not only does an array lookup, but also does bounds checking.

Benchmark Computation

```
void combinel (vec_ptr_t v, data_t *dest) {
    long int i;
    *dest = IDENT;
    for (i = 0; i < vec_length(v); i++) {
        data_t val;
        get_vec_element(v, i, &val);
        *dest = *dest OP val;
    }
}
```

- Data Types
- use different declarations for data_t
» int
» float
» double
- Operations
- use different definitions of OP and IDENT
» +, 0
» *, 1

Compute sum or product of vector elements

Supplied by CMU.

Cycles Per Element (CPE)

- Convenient way to express performance of program that operates on vectors or lists
- Length = n
- T = CPE*n + Overhead
- CPE is slope of line

Supplied by CMU.

A cycle is a measure of processor time, often referred to as a clock cycle. Processors are driven by a clock, running at a certain frequency, say $10 \mathrm{GHz}\left(10^{*} 2^{30}\right.$ cycles per second). In this case, the length of a cycle is the period of the clock (the reciprocal of its frequency -- $1 * 2^{-30}$ seconds).

Benchmark Performance

```
void combinel(vec_ptr_t v, data_t *dest) {
    long int i;
    *dest = IDENT; Compute sum or
    for (i = 0; i < vec_length(v); i++) { product of vector
        data_t val;
        get_vec_element(v, i, &val);
        *dest = *dest OP val;
    }
}
```

Method	Integer		Double FP	
Operation	Add	Mult	Add	Mult
Combine1 unoptimized	29.0	29.2	27.4	27.9
Combine1-01	12.0	12.0	12.0	13.0

```
CS33 Intro to Computer Systems

Supplied by CMU.

The times given in the table are in cycles/element. The unoptimized code was compiled with the -O0 flag. The code would most likely be faster if compiled with the - O 2 flag, but the purpose of these slides is to figure out exactly what can make it run faster.

\section*{Move vec_length}
```

void combine2(vec_ptr_t v, data_t *dest) {
long int i;
long int length = vec_length(v);
*dest = IDENT;
for (i = 0; i < length; i++) {
data_t val;
get_vec_element(v, i, \&val);
*dest = *dest OP val;
}
}

```
\begin{tabular}{|l|r|r|r|r|}
\hline Method & \multicolumn{2}{|c|}{ Integer } & \multicolumn{2}{|c|}{ Double FP } \\
\hline Operation & Add & Mult & Add & Mult \\
\hline \begin{tabular}{l} 
Combine1 \\
unoptimized
\end{tabular} & 29.0 & 29.2 & 27.4 & 27.9 \\
\hline Combine1 -O1 & 12.0 & 12.0 & 12.0 & 13.0 \\
\hline Combine2 & 8.03 & 8.09 & 10.09 & 12.08 \\
\hline
\end{tabular}
```

CS33 Intro to Computer Systems

```
    XV-26

Supplied by CMU.

Since the result of calling vec_length never changes, for the given vector v , there's no point to calling it in every iteration of the loop. So, we move it out of the loop and call it just once, with dramatic improvement of performance.


Supplied by CMU.

Since bounds checking isn't necessary, we replace get_vec_element with a simple array lookup.

\section*{Eliminate Unneeded Memory References}
```

void combine4(vec_ptr_t v, data_t *dest){
int i;
int length = vec_length(v);
data_t *d = get_vec_start(v);
data t t = IDENT;
for (i = 0; i < length; i++)
t = t OP d[i];
*dest = t;
}

```
\begin{tabular}{|l|r|r|r|r|}
\hline Method & \multicolumn{2}{|c|}{ Integer } & \multicolumn{2}{|c|}{ Double FP } \\
\hline Operation & Add & Mult & Add & Mult \\
\hline Combine1 -01 & 12.0 & 12.0 & 12.0 & 13.0 \\
\hline Combine4 & 2.0 & 3.0 & 3.0 & 5.0 \\
\hline
\end{tabular}

CS33 Intro to Computer Systems XV-28

Supplied by CMU

Finally, we recognize that we don't need to update *dest on each iteration, but only when we're done.

\section*{Not a Quiz}

Combine 4 is pretty fast; we've done all the "obvious" optimizations. How much faster will we be able to make it? (Hint: it involves taking advantage of pipelining and multiple functional units on the chip.)
a) \(1 \times\) (it's already as fast as possible)
b) \(2 x-4 x\)
c) \(16 x-64 x\)
d) \(128 x-\infty x\)

\section*{Modern CPU Design}


Supplied by CMU.

\section*{Multiple Operations per Instruction}
- addq \%rax, \%rdx - a single operation
- addq \%rax, \(8(\% \mathrm{rdx})\)
- three operations
" load value from memory
" add to it the contents of \%rax
" store result in memory

\section*{Instruction-Level Parallelism}
- addq 8 (\%rax), \%rax addq \%rbx, \%rdx
- can be executed simultaneously: completely independent
- addq 8 (\%rax), \%rbx addq \%rbx, \%rdx
- can also be executed simultaneously, but some coordination is required

\section*{Out-of-Order Execution}
- movss (\%rbp), \%xmm0 mulss (\%rax, \%rdx, 4), \%xmm0 movss \(\% x m m 0\), ( \(\% r b p\) ) addq \(\% r 8\), \(\% r 9 \quad\) these can be imulq \(\% r c x, \% r 12\) addq \(\$ 1\), \%rdx executed without waiting for the first three to finish
CS33 Intro to Computer Systems XV-33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Note that the first three instructions are floating-point instructions, and \%xmm0 is a floating-point register.

\section*{Speculative Execution}
```

80489f3: movl \$0x1,%ecx
80489f8: xorq %rdx,%rdx
80489fa: cmpq %rsi,%rdx
80489fc: jnl 8048a25
80489fe: movl %esi,%edi
8048a00: imull (%rax,%rdx,4),%ecx

```
perhaps execute these instructions

\section*{Haswell CPU}

\section*{- Functional Units}
1) Integer arithmetic, floating-point multiplication, integer and floating-point division, branches
2) Integer arithmetic, floating-point addition, integer and floatingpoint multiplication
3) Load, address computation
4) Load, address computation
5) Store
6) Integer arithmetic
7) Integer arithmetic, branches
8) Store, address computation
```

CS33 Intro to Computer Systems XV-35

```

Supplied by CMU.
"Haswell" is Intel's code name for relatively recent versions of its Core I7 and Core I5 processor design. Most of the computers in Brown CS employ Core I5 processors.

While Apple's M1 and M2 processors have a different architecture, producing code for them involves similar concerns as producing code for Haswell processors.

\section*{Haswell CPU}
- Instruction characteristics
\begin{tabular}{|c|c|c|c|}
\hline Instruction & Latency & Cycles/Issue & Capacity \\
\hline Integer Add & 1 & 1 & 4 \\
\hline Integer Multiply & 3 & 1 & 1 \\
\hline Integer/Long Divide & 3-30 & 3-30 & 1 \\
\hline Single/Double FP Add & 3 & 1 & 1 \\
\hline Single/Double FP Multiply & 5 & 1 & 2 \\
\hline Single/Double FP Divide & 3-15 & 3-15 & 1 \\
\hline Load & 4 & 1 & 2 \\
\hline Store & - & 1 & 2 \\
\hline CS33 Intro to Computer Systems & & & \\
\hline
\end{tabular}

Supplied by CMU.

These figures are for those cases in which the operands are either in registers or are immediate. For the other cases, additional time is required to load operands from memory or store them to memory.
"Cycles/Issue" is the number of clock cycles that must occur from the start of execution of one instruction to the start of execution to the next. The reciprocal of this value is the throughput: the number of instructions (typically a fraction) that can be completed per cycle.
"Capacity" is the number of functional units that can do the indicated operations.

The figures for load and store assume the data is coming from/going to the data cache. Much more time is required if the source or destination is RAM.

The latency for stores is a bit complicated - we might discuss it in a later lecture.

\section*{Haswell CPU Performance Bounds}
\begin{tabular}{lcccc} 
& \multicolumn{2}{c}{ Integer } & \multicolumn{2}{c}{ Floating Point } \\
& + & \(*\) & + & \(*\) \\
Latency & 1.00 & 3.00 & 3.00 & 5.00 \\
Throughput & 4.00 & 1.00 & 1.00 & 2.00
\end{tabular}
CS33 Intro to Computer Systems XV-37

Derived from a slide provided by CMU.

We assume that the source and destination are either immediate (source only) or registers. Thus, any bottlenecks due to memory access do not arise.

Each integer add requires one clock cycle of latency. It's also the case that, for each functional unit doing integer addition, the time required between add instructions is one clock cycle. However, since there are four such functional units, all four can be kept busy with integer add instructions and thus the aggregate throughput can be as good as one integer add instruction completing, on average, every .25 clock cycles, for a throughput of 4 instructions/cycle.

Each integer multiply requires three clock cycles. But since a new multiply instruction can be started every clock cycle (i.e., they can be pipelined), the aggregate throughput can be as good as one integer multiply completing every clock cycle.

Each floating point multiply requires five clock cycles, but they can be pipelined with one starting every clock cycle. Since there are two functional units that can perform floating point multiply, the aggregate throughput can be as good as one completing every .5 clock cycles, for a throughput of 2 instructions/cycle.

\section*{x86-64 Compilation of Combine4}

\section*{- Inner loop (case: SP floating-point multiply)}
\begin{tabular}{|ll|}
\hline .L519: & \# Loop: \\
mullss (\%rax, \%rdx,4), \%xmm0 \# t = t * d[i] \\
addq \$1, \%rdx & \# i++ \\
cmpq \%rdx, \%rbp & \# Compare length:i \\
jg .L519 & \# If >, goto Loop \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|r|}
\hline Method & \multicolumn{2}{|c|}{ Integer } & \multicolumn{2}{c|}{ Double FP } \\
\hline Operation & Add & Mult & Add & Mult \\
\hline Combine4 & 1.27 & 3.00 & 3.00 & 5.00 \\
\hline Latency bound & 1.00 & 3.00 & 3.00 & 5.0 \\
\hline \begin{tabular}{l} 
Throughput \\
bound
\end{tabular} & 0.25 & 1.00 & 1.00 & 0.50 \\
\hline
\end{tabular}
```

CS33 Intro to Computer Systems XV-38

```

Supplied by CMU.

These numbers are for the Haswell CPU. The row labelled "Combine4" gives the actual time, in clock cycles, taken by each execution of the loop. The row labelled "Latency bound" gives the time required for the arithmetic instruction (integer add or multiply, double-precision floating-point add or multiply) in each execution of the loop. The last row, "Throughput bound", gives the time required for the arithmetic instructions if they can be executed without delays by the multiple execution units - i.e., there are no data hazards (as explained in the previous lecture).


This is Figure 5.13 of Bryant and O'Hallaron. It shows the code for the single-precision floating-point version of our example.

\section*{Data-Flow Graphs of Inner Loop}


These are Figures 5.14 a and b of Bryant and O'Hallaron.

Since the values in \%rax and \%rbp don't change during the execution of the inner loop, they're not critical to the scheduling and timing of the instructions. Assuming the branch is taken, the \(\mathbf{~ c m p}\) and \(\mathbf{j g}\) instructions also aren't a factor in determining the timing of the instructions. We focus on what's shown in the righthand portion of the slide.

\section*{Relative Execution Times}


Here we modify the graph of the previous slide to show the relative times required of mul, load, and add.


This is Figure 5.15 of Bryant and O'Hallaron.

\section*{Pipelined Data-Flow Over Multiple Iterations}


Without pipelining, the data flow would appear as shown in the slide.

\section*{Pipelined Data-Flow Over Multiple Iterations}


The loads depend only on the computation of the array index, which is quickly done by addition units. Thus, the loads can be pipelined.
It's clear that the multiplies form the critical path, since they use the results of the previous multiplies.

\section*{Pipelined Data-Flow Over Multiple Iterations}


The loads depend only on the computation of the array index, which is quickly done by addition units. Thus, the loads can be pipelined.
It's clear that the multiplies form the critical path, since they use the results of the previous multiplies.


Supplied by CMU.

Since the multiplies form the critical path, here we focus only on them. In what's shown here, only one multiply can be done at a time, since the result of the one multiply is needed for the next.

\section*{Loop Unrolling}
```

void unroll2x(vec_ptr_t v, data_t *dest)
{
int length = vec_length(v);
int limit = length-1;
data_t *d = get_vec_start(v);
data-t x = IDENT;
int i;
/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {
x = (x OP d[i]) OP d[i+1];
}
/* Finish any remaining elements */
for (; i < length; i++) {
x = x OP d[i];
}
*dest = x;
}

```
- Perform 2x more useful work per iteration
```

CS33 Intro to Computer Systems

Supplied by CMU.

Effect of Loop Unrolling

Method	Integer		Double FP	
Operation	Add	Mult	Add	Mult
Combine4	1.27	3.00	3.00	5.00
Unroll $2 x$	1.01	3.00	3.00	5.00
Latency bound	1.0	3.0	3.0	5.0
Throughput bound	0.25	1.0	1.0	0.5

- Helps integer add
- reduces loop overhead
- Others don't improve. Why?
- still sequential dependency
$x=(x$ OP d[i]) OP d[i+1];

CS33 Intro to Computer Systems XV-48

Supplied by CMU.

Loop Unrolling with Reassociation

```
void unroll2xra(vec_ptr_t v, data_t *dest)
{
    int length = vec length(v);
    int limit = length-1;
    data_t *d = get_vec_start(v);
    data_t x = IDENT;
    int i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2) {
        x = x OP (d[i] OP d[i+1]);
    }
    /* Finish any remaining elements */
    for (; i < length; i++) {
        x = x OP d[i]; Compare to before
    }
    *dest = x;
x = (x OP d[i]) OP d[i+1];
```

- Can this change the result of the computation?
- Yes, for FP. Why?

```
CS33 Intro to Computer Systems
XV-49
```

Supplied by CMU.

Reassociated Computation

$\mathbf{x}=\mathbf{x}$ OP (d[i] OP d[i+1]);

- What changed:
- ops in the next iteration can be started early (no dependency)
- Overall Performance
- N elements, D cycles latency/op
- should be (N/2+1)*D cycles: CPE = D/2
- measured CPE slightly worse for integer addition (there are other things going on)

```
CS33 Intro to Computer Systems XV-50
```

Supplied by CMU.

How much time is required to compute the products shown in the slide? The multiplications in the upper right of the tree, directly involving the d_{i}, could all be done at once, since there are no dependencies; thus, computing them can be done in D cycles, where D is the latency required for multiply. This assumes we have a sufficient number of functional units to do this, thus this is a lower bound. The multiplications in the lower left must be done sequentially, since each depends on the previous; thus, computing them requires (N/2)*D cycles. Since first of the top right multiplies must be completed before the bottom left multiplies can start, the overall performance has a lower bound of $(\mathrm{N} / 2+1) * \mathrm{D}$.

Effect of Reassociation

Method	Integer		Double FP	
Operation	Add	Mult	Add	Mult
Combine4	1.27	3.00	3.00	5.00
Unroll 2x	1.01	3.00	3.00	5.00
Unroll 2x, reassociate	1.01	1.51	1.51	2.51
Latency bound	1.0	3.0	3.0	5.0
Throughput bound	.25	1.0	1.0	.5

- Nearly $2 x$ speedup for int *, FP +, FP *
- reason: breaks sequential dependency

$$
x=x \text { OP (d[i] OP d[i+1]); }
$$

CS33 Intro to Computer Systems XV-51

Supplied by CMU

Loop Unrolling with Separate Accumulators

```
void unroll2xp2x(vec_ptr_t v, data_t *dest)
{
    int length = vec_length(v);
    int limit = length-1;
    data_t *d = get_vec_start(v);
    data_t x0 = IDENT;
    data_t x1 = IDENT;
    int i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2) {
        x0 = x0 OP d[i];
        x1 = x1 OP d[i+1];
    }
    /* Finish any remaining elements */
    for (; i < length; i++) {
        x0 = x0 OP d[i];
    }
    *dest = x0 OP x1;
}
```

- Different form of reassociation

CS33 Intro to Computer Systems
XV-52

Supplied by CMU.

Here one "accumulator" $(\mathrm{x} 0)$ is summing the array elements with even indices, the other (x 1) is summing array elements with odd indices.

Effect of Separate Accumulators

Method	Integer		Double FP	
Operation	Add	Mult	Add	Mult
Combine4	1.27	3.00	3.00	5.00
Unroll 2x	1.01	3.00	3.00	5.00
Unroll 2x, reassociate	1.01	1.51	1.51	2.01
Unroll 2x parallel 2x	.81	1.51	1.51	2.51
Latency bound	1.0	3.0	3.0	5.0
Throughput bound	.25	1.0	1.0	.5

- $2 x$ speedup (over unroll $2 x$) for int *, FP +, FP *
- breaks sequential dependency in a "cleaner," more obvious way

```
x0 = x0 OP d[i];
x1 = x1 OP d[i+1];
```

CS33 Intro to Computer Systems XV-53

Supplied by CMU.

Separate Accumulators

$x 0=x 0$ OP d[i];
$x 1=x 1$ OP $d[i+1]$;

- Overall Performance
- N elements, D cycles latency/op
- should be ($\mathrm{N} / 2+1$) * cycles: CPE = D/2
- Integer addition improved, but not yet at predicted value

What Now?

Supplied by CMU.

Quiz 2

We're making progress. With two accumulators we get a two-fold speedup. With three accumulators, we can get a three-fold speedup. How much better performance can we expect if we add even more accumulators?
a) It keeps on getting better as we add more and more accumulators
b) It's limited by the latency bound
c) It's limited by the throughput bound
d) It's limited by something else

Performance

- K-way loop unrolling with K accumulators
- limited by number and throughput of functional units

CS33 Intro to Computer Systems
XV-56

This is Figure 5.30 from the textbook.

Achievable Performance

Method	Integer		Double FP	
Operation	Add	Mult	Add	Mult
Combine4	1.27	3.0	3.0	5.0
Achievable scalar	.52	1.01	1.01	.54
Latency bound	1.00	3.00	3.00	5.00
Throughput bound	.25	1.00	1.00	.5

CS33 Intro to Computer Systems

Based on a slide supplied by CMU.

Using Vector Instructions

Method	Integer		Double FP	
Operation	Add	Mult	Add	Mult
Combine4	1.27	3.0	3.0	5.0
Achievable Scalar	.52	1.01	1.01	.54
Latency bound	1.00	3.00	3.00	5.00
Throughput bound	.25	1.00	1.00	.5
Achievable Vector	.05	.24	.25	.16
Vector throughput bound	.06	.12	.25	.12

- Make use of SSE Instructions

- parallel operations on multiple data elements
CS33 Intro to Computer Systems XV-58

Based on a slide supplied by CMU.

SSE stands for "streaming SIMD extensions". SIMD stands for "single instruction multiple data" - these are instructions that operate on vectors.

Hyper Threading

CS33 Intro to Computer Systems XV-59 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

One way of improving the utilization of the functional units of a processor is hyperthreading. The processor supports multiple instruction streams ("hyper threads"), each with its own instruction control. But all the instruction streams share the one set of functional units.

Multiple Cores

Going a step further, one can pack multiple complete processors onto one chip. Each processor is known as a core and can execute instructions independently of the other cores (each has its private set of functional units). In addition to each core having its own instruction and data cache, there are caches shared with the other cores on the chip. We discuss this in more detail in a subsequent lecture.

In many of today's processor chips, hyperthreading is combined with multiple cores. Thus, for example, a chip might have four cores each with four hyperthreads. Thus, the chip might handle 16 instruction streams.

