
CS33 Intro to Computer Systems XV–1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Architecture and Optimization (2)

CS33 Intro to Computer Systems XV–2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Limitations of Optimizing Compilers

• Operate under fundamental constraint
– must not cause any change in program behavior
– often prevents it from making optimizations that would

only affect behavior under pathological conditions
• Most analysis is performed only within functions

– whole-program analysis is too expensive in most cases
• Most analysis is based only on static information

– compiler has difficulty anticipating run-time inputs

• When in doubt, the compiler must be conservative

CS33 Intro to Computer Systems XV–3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Generally Useful Optimizations
• Optimizations that you or the compiler should do

regardless of processor / compiler

• Code Motion
– reduce frequency with which computation performed, if it

will always produce same result
» especially moving code out of loop

long j;
 long ni = n*i;
 for (j = 0; j < n; j++)
 a[ni+j] = b[j];

void set_row(long *a, long *b,
 long i, long n){
 long j;
 for (j = 0; j < n; j++)
 a[n*i+j] = b[j];
}

CS33 Intro to Computer Systems XV–4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Reduction in Strength

• Replace costly operation with simpler one
• Shift, add instead of multiply or divide

16*x --> x << 4

– utility is machine-dependent
– depends on cost of multiply or divide instruction

» on some Intel processors, multiplies are 3x longer than adds

• Recognize sequence of products

for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 a[n*i + j] = b[j];

int ni = 0;
for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++)
 a[ni + j] = b[j];
 ni += n;
}

CS33 Intro to Computer Systems XV–5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Share Common Subexpressions
• Reuse portions of expressions
• Compilers often not very sophisticated in exploiting arithmetic

properties

/* Sum neighbors of i,j */
up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;

long inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;

3 multiplications: i*n, (i–1)*n, (i+1)*n 1 multiplication: i*n

leaq 1(%rsi), %rax # i+1
leaq -1(%rsi), %r8 # i-1
imulq %rcx, %rsi # i*n
imulq %rcx, %rax # (i+1)*n
imulq %rcx, %r8 # (i-1)*n
addq %rdx, %rsi # i*n+j
addq %rdx, %rax # (i+1)*n+j
addq %rdx, %r8 # (i-1)*n+j

imulq %rcx, %rsi # i*n
addq %rdx, %rsi # i*n+j
movq %rsi, %rax # i*n+j
subq %rcx, %rax # i*n+j-n
leaq (%rsi,%rcx), %rcx # i*n+j+n

CS33 Intro to Computer Systems XV–6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1

The fastest means for evaluating
n*n + 2*n + 1

requires exactly:
a) 2 multiplies and 2 additions
b) three additions
c) one multiply and two additions
d) one multiply and one addition

Hint: remember high-school algebra

CS33 Intro to Computer Systems XV–7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Optimization Blocker: Function Calls

• Function to convert string to lower case

void lower(char *s){
 int i;
 for (i = 0; i < strlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

CS33 Intro to Computer Systems XV–8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Lower Case Conversion Performance

• Time quadruples when string length doubles
• Quadratic performance

0
20
40
60
80
100
120
140
160
180
200

0 100000 200000 300000 400000 500000

CP
U

se
co

nd
s

String length

lower

CS33 Intro to Computer Systems XV–9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Convert Loop To Goto Form

• strlen executed every iteration

void lower(char *s){
 int i = 0;
 if (i >= strlen(s))
 goto done;
 loop:
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
 i++;
 if (i < strlen(s))
 goto loop;
 done:
}

CS33 Intro to Computer Systems XV–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Strlen

• strlen performance
– only way to determine length of string is to scan its entire length,

looking for null character
• O(N) performance

– N calls to strlen
– overall O(N2) performance

size_t strlen(const char *s){
 size_t length = 0;
 while (*s != '\0') {
 s++;
 length++;
 }
 return length;
}

CS33 Intro to Computer Systems XV–11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Improving Performance

• Move call to strlen outside of loop
– since result does not change from one iteration to another
– form of code motion

void lower2(char *s){
 int i;
 int len = strlen(s);
 for (i = 0; i < len; i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

CS33 Intro to Computer Systems XV–12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Lower-Case Conversion Performance

• Time doubles when string-length doubles
– linear performance of lower2

0
20
40
60
80
100
120
140
160
180
200

0 100000 200000 300000 400000 500000

CP
U

se
co

nd
s

String length

lower

lower2

CS33 Intro to Computer Systems XV–13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Optimization Blocker: Function Calls
• Why couldn’t compiler move strlen out of inner loop?

– function may have side effects
» alters global state each time called

– function may not return same value for given arguments
» depends on other parts of global state
» function lower could interact with strlen

• Warning:
– compiler treats function call as a black box
– weak optimizations near them

• Remedy:
– do your own code motion

int lencnt = 0;
size_t strlen(const char *s){
 size_t length = 0;
 while (*s != '\0') {
 s++; length++;
 }
 lencnt += length;
 return length;
}

CS33 Intro to Computer Systems XV–14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Memory Matters

• Code updates b[i] (in memory) on every iteration
• Why couldn’t compiler optimize this away?

sum_rows1 inner loop
.L3:
 movq (%r8,%rax,8), %rcx # rcx = a[i][j]
 addq %rcx, (%rdx) # b[i] += rcx
 addq $1, %rax # j++
 cmpq %rax, %rdi # if i<n
 jne .L3 # goto .L3

/* Sum rows of n X n matrix a
 and store result in vector b */
void sum_rows1(long n, long a[][n], long *b) {
 long i, j;

for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)

b[i] += a[i][j];
 }
}

CS33 Intro to Computer Systems XV–15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Memory Aliasing

• Code updates b[i] on every iteration
• Must consider possibility that these updates will affect program behavior

/* Sum rows of n X n matrix a
 and store result in vector b */
void sum_rows1(long n, long a[][n], long *b) {
 long i, j;

for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)

b[i] += a[i][j];
 }
}

int A[3][3] =
 {{ 0, 1, 2},
 { 4, 8, 16},
 {32, 64, 128}};

int *B = &A[1][0];

sum_rows1(3, A, B);

i = 0: [3, 8, 16]

init: [4, 8, 16]

i = 1: [3, 22, 16]

i = 2: [3, 22, 224]

Value of B:

CS33 Intro to Computer Systems XV–16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Removing Aliasing

• No need to store intermediate results

sum_rows2 inner loop
.L4:
 addq (%r8, %rax, 8), %rcx
 addq $1, %rax
 cmpq %rax, %rdi
 jne .L4

/* Sum rows of n X n matrix a
 and store result in vector b */
void sum_rows1(long n, long a[][n], long *b) {
 long i, j;

for (i = 0; i < n; i++) {
 long val = 0;
 for (j = 0; j < n; j++)

val += a[i][j];
 b[i] = val;
 }
}

CS33 Intro to Computer Systems XV–17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Optimization Blocker: Memory Aliasing

• Aliasing
– two different memory references specify single

location
– easy to have happen in C
» since allowed to do address arithmetic
» direct access to storage structures

– get in habit of introducing local variables
» accumulating within loops
» your way of telling compiler not to check for aliasing

CS33 Intro to Computer Systems XV–18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

C99 to the Rescue

• New attribute
– restrict

» applied to a pointer, tells the compiler that the object
pointed to will be accessed only via this pointer

» compiler thus doesn’t have to worry about aliasing
» but the programmer does ...
» syntax

int *restrict pointer;

CS33 Intro to Computer Systems XV–19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Pointers and Arrays

• long a[][n]
• a is a 2-D array of longs, the size of each row is n

• long (*c)[n]
• c is a pointer to a 1-D array of size n

• a and c are of the same type

CS33 Intro to Computer Systems XV–20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Memory Matters, Fixed

• Code doesn’t update b[i] on every iteration

sum_rows1 inner loop
.L3:
 addq (%rcx,%rax,8), %rdx
 addq $1, %rax
 cmpq %rax, %rdi
 jne .L3

/* Sum rows of n X n matrix a
 and store result in vector b */
void sum_rows1(long n, long (*restrict a)[n], long *restrict b) {
 long i, j;

for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)

b[i] += a[i][j];
 }
}

CS33 Intro to Computer Systems XV–21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Exploiting Instruction-Level Parallelism

• Need general understanding of modern
processor design
– hardware can execute multiple instructions in

parallel
• Performance limited by data dependencies
• Simple transformations can have dramatic

performance improvement
– compilers often cannot make these transformations
– lack of associativity and distributivity in floating-

point arithmetic

CS33 Intro to Computer Systems XV–22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Benchmark Example: Datatype for Vectors

/* data structure for vectors */
typedef struct{
 int len;
 data_t *data;
} vec_t, *vec_ptr_t;

/* retrieve vector element and store at val */
int get_vec_element(vec_ptr_t v, int idx, data_t *val){
 if (idx < 0 || idx >= v->len)
 return 0;
 *val = v->data[idx];
 return 1;
}

/* return length of vector */
int vec_length(vec_ptr_t v) {
 return v->len;
}

len
data

0 1 len-1

CS33 Intro to Computer Systems XV–23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Benchmark Computation

• Data Types
– use different declarations

for data_t
» int
» float
» double

• Operations
– use different definitions of
OP and IDENT
» +, 0
» *, 1

void combine1(vec_ptr_t v, data_t *dest){
 long int i;
 *dest = IDENT;
 for (i = 0; i < vec_length(v); i++) {
 data_t val;
 get_vec_element(v, i, &val);
 *dest = *dest OP val;
 }
}

Compute sum or
product of vector
elements

CS33 Intro to Computer Systems XV–24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Cycles Per Element (CPE)
• Convenient way to express performance of program that

operates on vectors or lists
• Length = n
• T = CPE*n + Overhead

– CPE is slope of line

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200

Cy
cl

es

n = Number of elements

vsum1: Slope = 4.0

vsum2: Slope = 3.5

CS33 Intro to Computer Systems XV–25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Benchmark Performance
void combine1(vec_ptr_t v, data_t *dest){
 long int i;
 *dest = IDENT;
 for (i = 0; i < vec_length(v); i++) {
 data_t val;
 get_vec_element(v, i, &val);
 *dest = *dest OP val;
 }
}

Compute sum or
product of vector
elements

Method Integer Double FP
Operation Add Mult Add Mult
Combine1
unoptimized

29.0 29.2 27.4 27.9

12.0 12.0 12.0 13.0Combine1 –O1

CS33 Intro to Computer Systems XV–26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Move vec_length
void combine2(vec_ptr_t v, data_t *dest){
 long int i;
 long int length = vec_length(v);
 *dest = IDENT;
 for (i = 0; i < length; i++) {
 data_t val;
 get_vec_element(v, i, &val);
 *dest = *dest OP val;
 }
}

Method Integer Double FP
Operation Add Mult Add Mult
Combine1
unoptimized

29.0 29.2 27.4 27.9

Combine1 –O1 12.0 12.0 12.0 13.0
Combine2 8.03 8.09 10.09 12.08

CS33 Intro to Computer Systems XV–27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Eliminate Function Calls
void combine3(vec_ptr_t v, data_t *dest){
 long int i;
 long int length = vec_length(v);
 data_t *data = get_vec_start(v);
 *dest = IDENT;
 for (i = 0; i < length; i++) {
 *dest = *dest OP data[i];
 }
}

Method Integer Double FP
Operation Add Mult Add Mult
Combine2 8.03 8.09 10.09 12.08
Combine3 6.01 8.01 10.01 12.02

data_t *get_vec_start(
 vec_ptr v) {
 return v->data;
}

CS33 Intro to Computer Systems XV–28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Eliminate Unneeded Memory
References

void combine4(vec_ptr_t v, data_t *dest){
 int i;
 int length = vec_length(v);
 data_t *d = get_vec_start(v);
 data_t t = IDENT;
 for (i = 0; i < length; i++)
 t = t OP d[i];
 *dest = t;
}

Method Integer Double FP
Operation Add Mult Add Mult
Combine1 –O1 12.0 12.0 12.0 13.0
Combine4 2.0 3.0 3.0 5.0

CS33 Intro to Computer Systems XV–29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Not a Quiz

Combine4 is pretty fast; we’ve done all the
“obvious” optimizations. How much faster will
we be able to make it? (Hint: it involves taking
advantage of pipelining and multiple functional
units on the chip.)

a) 1× (it’s already as fast as possible)
b) 2× – 4×
c) 16× – 64×

d) 128× – ∞×

CS33 Intro to Computer Systems XV–30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Modern CPU Design

Execution

Functional
Units

Instruction Control

Integer/
Branch

FP
Add

FP
Mult/Div Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction OK?

DataData

Addr. Addr.

General
Integer

Operation Results

Retirement
Unit

Register
File

Register Updates

CS33 Intro to Computer Systems XV–31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Multiple Operations per Instruction

• addq %rax, %rdx
– a single operation

• addq %rax, 8(%rdx)
– three operations

» load value from memory
» add to it the contents of %rax
» store result in memory

CS33 Intro to Computer Systems XV–32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Instruction-Level Parallelism

• addq 8(%rax), %rax
addq %rbx, %rdx
– can be executed simultaneously: completely

independent
• addq 8(%rax), %rbx
addq %rbx, %rdx
– can also be executed simultaneously, but some

coordination is required

CS33 Intro to Computer Systems XV–33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Out-of-Order Execution

• movss (%rbp), %xmm0
mulss (%rax, %rdx, 4), %xmm0
movss %xmm0, (%rbp)
addq %r8, %r9
imulq %rcx, %r12
addq $1, %rdx

these can be
executed without
waiting for the first
three to finish

CS33 Intro to Computer Systems XV–34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Speculative Execution

80489f3: movl $0x1,%ecx

80489f8: xorq %rdx,%rdx

80489fa: cmpq %rsi,%rdx

80489fc: jnl 8048a25

80489fe: movl %esi,%edi

8048a00: imull (%rax,%rdx,4),%ecx
perhaps execute
these instructions

CS33 Intro to Computer Systems XV–35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Haswell CPU
• Functional Units

1) Integer arithmetic, floating-point multiplication, integer and
floating-point division, branches

2) Integer arithmetic, floating-point addition, integer and floating-
point multiplication

3) Load, address computation
4) Load, address computation
5) Store
6) Integer arithmetic
7) Integer arithmetic, branches
8) Store, address computation

CS33 Intro to Computer Systems XV–36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Haswell CPU
• Instruction characteristics

Instruction Latency Cycles/Issue Capacity
Integer Add 1 1 4
Integer Multiply 3 1 1
Integer/Long Divide 3-30 3-30 1
Single/Double FP Add 3 1 1
Single/Double FP Multiply 5 1 2
Single/Double FP Divide 3-15 3-15 1

Load 4 1 2
Store - 1 2

CS33 Intro to Computer Systems XV–37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Haswell CPU Performance Bounds

Integer Floating Point
 + * + *
Latency 1.00 3.00 3.00 5.00
Throughput 4.00 1.00 1.00 2.00

CS33 Intro to Computer Systems XV–38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

x86-64 Compilation of Combine4

• Inner loop (case: SP floating-point multiply)

.L519: # Loop:
 mullss (%rax,%rdx,4), %xmm0 # t = t * d[i]
 addq $1, %rdx # i++
 cmpq %rdx, %rbp # Compare length:i
 jg .L519 # If >, goto Loop

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.00 3.00 5.00
Latency bound 1.00 3.00 3.00 5.0

Throughput
bound

0.25 1.00 1.00 0.50

CS33 Intro to Computer Systems XV–39 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Inner Loop

%rax %xmm0%rdx%rbp

load
mul
add
cmp

jg

%rax %rdx%rbp

mulss (%rax,%rdx,4), %xmm0

addq $1,%rdx

cmpq %rdx,%rbp

jg loop

%xmm0

CS33 Intro to Computer Systems XV–40 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Data-Flow Graphs of Inner Loop

%xmm0 %rdx

load

mul add

cmp

jg

%rdx%xmm0

%rax %rbp

%xmm0 %rdx

%rdx%xmm0

data[i]
load

mul add

CS33 Intro to Computer Systems XV–41 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Relative Execution Times
%xmm0 %rdx

%rdx%xmm0

data[i]

load

mul

add

CS33 Intro to Computer Systems XV–42 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Data Flow Over
Multiple Iterations

data[0]
load

mul add

data[1]
load

mul add

data[n-2]
load

mul add

•
•
•

•
•
•

•
•
•

Critical path

data[n-1]
load

mul add

CS33 Intro to Computer Systems XV–43 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Pipelined Data-Flow Over Multiple
Iterations

load

mul

mul

add

load

mul

add

add

load

CS33 Intro to Computer Systems XV–44 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Pipelined Data-Flow Over Multiple
Iterations

load

mul

mul

mul

add

load

add

add

load

CS33 Intro to Computer Systems XV–45 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Pipelined Data-Flow Over Multiple
Iterations

load

mul

mul

mul

add

load

add

add

load

CS33 Intro to Computer Systems XV–46 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Combine4 = Serial Computation (OP = *)
• Computation (length=8)

 ((((((((1 * d[0]) * d[1]) * d[2]) * d[3])
* d[4]) * d[5]) * d[6]) * d[7])

• Sequential dependence
– performance: determined by latency of OP

*

*

1 d0

d1

*

d2

*

d3

*

d4

*

d5

*

d6

*

d7

CS33 Intro to Computer Systems XV–47 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Loop Unrolling

• Perform 2x more useful work per iteration

void unroll2x(vec_ptr_t v, data_t *dest)
{
 int length = vec_length(v);
 int limit = length-1;
 data_t *d = get_vec_start(v);
 data_t x = IDENT;
 int i;
 /* Combine 2 elements at a time */
 for (i = 0; i < limit; i+=2) {
 x = (x OP d[i]) OP d[i+1];
 }
 /* Finish any remaining elements */
 for (; i < length; i++) {
 x = x OP d[i];
 }
 *dest = x;
}

CS33 Intro to Computer Systems XV–48 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Effect of Loop Unrolling

• Helps integer add
– reduces loop overhead

• Others don’t improve. Why?
– still sequential dependency

x = (x OP d[i]) OP d[i+1];

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.00 3.00 5.00
Unroll 2x 1.01 3.00 3.00 5.00
Latency bound 1.0 3.0 3.0 5.0
Throughput
bound

0.25 1.0 1.0 0.5

CS33 Intro to Computer Systems XV–49 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Loop Unrolling with Reassociation

• Can this change the result of the computation?
• Yes, for FP. Why?

void unroll2xra(vec_ptr_t v, data_t *dest)
{
 int length = vec_length(v);
 int limit = length-1;
 data_t *d = get_vec_start(v);
 data_t x = IDENT;
 int i;
 /* Combine 2 elements at a time */
 for (i = 0; i < limit; i+=2) {
 x = x OP (d[i] OP d[i+1]);
 }
 /* Finish any remaining elements */
 for (; i < length; i++) {
 x = x OP d[i];
 }
 *dest = x;
}

x = (x OP d[i]) OP d[i+1];

Compare to before

CS33 Intro to Computer Systems XV–50 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Reassociated Computation

• What changed:
– ops in the next iteration can

be started early (no
dependency)

• Overall Performance
– N elements, D cycles

latency/op
– should be (N/2+1)*D cycles:

CPE = D/2
– measured CPE slightly

worse for integer addition
(there are other things going
on)

*

*

1

*

*

*

d1d0

*

d3d2

*

d5d4

*

d7d6

x = x OP (d[i] OP d[i+1]);

CS33 Intro to Computer Systems XV–51 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Effect of Reassociation

• Nearly 2x speedup for int *, FP +, FP *
– reason: breaks sequential dependency

x = x OP (d[i] OP d[i+1]);

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.00 3.00 5.00
Unroll 2x 1.01 3.00 3.00 5.00
Unroll 2x,
reassociate

1.01 1.51 1.51 2.51

Latency bound 1.0 3.0 3.0 5.0
Throughput
bound

.25 1.0 1.0 .5

CS33 Intro to Computer Systems XV–52 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Loop Unrolling with Separate
Accumulators

• Different form of reassociation

void unroll2xp2x(vec_ptr_t v, data_t *dest)
{
 int length = vec_length(v);
 int limit = length-1;
 data_t *d = get_vec_start(v);
 data_t x0 = IDENT;
 data_t x1 = IDENT;
 int i;
 /* Combine 2 elements at a time */
 for (i = 0; i < limit; i+=2) {
 x0 = x0 OP d[i];
 x1 = x1 OP d[i+1];
 }
 /* Finish any remaining elements */
 for (; i < length; i++) {
 x0 = x0 OP d[i];
 }
 *dest = x0 OP x1;
}

CS33 Intro to Computer Systems XV–53 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Effect of Separate Accumulators

• 2x speedup (over unroll 2x) for int *, FP +, FP *
– breaks sequential dependency in a “cleaner,” more obvious way

x0 = x0 OP d[i];
 x1 = x1 OP d[i+1];

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.00 3.00 5.00
Unroll 2x 1.01 3.00 3.00 5.00
Unroll 2x,
reassociate

1.01 1.51 1.51 2.01

Unroll 2x parallel 2x .81 1.51 1.51 2.51
Latency bound 1.0 3.0 3.0 5.0
Throughput bound .25 1.0 1.0 .5

CS33 Intro to Computer Systems XV–54 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Separate Accumulators

*

*

1 d1

d3

*

d5

*

d7

*

*

*

1 d0

d2

*

d4

*

d6

x0 = x0 OP d[i];
 x1 = x1 OP d[i+1];

• What changed:
• two independent “streams” of

operations

• Overall Performance
• N elements, D cycles latency/op
• should be (N/2+1)*D cycles:

CPE = D/2
• Integer addition improved, but

not yet at predicted value

What Now?

CS33 Intro to Computer Systems XV–55 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2

Weʼre making progress. With two accumulators
we get a two-fold speedup. With three
accumulators, we can get a three-fold speedup.
How much better performance can we expect if
we add even more accumulators?

a) It keeps on getting better as we add more
and more accumulators

b) Itʼs limited by the latency bound
c) Itʼs limited by the throughput bound
d) Itʼs limited by something else

CS33 Intro to Computer Systems XV–56 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Performance

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

CP
E

Unrolling factor k

double *

double +

long *

long +

• K-way loop unrolling with K accumulators
• limited by number and throughput of functional units

CS33 Intro to Computer Systems XV–57 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Achievable Performance
Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.0 3.0 5.0
Achievable scalar .52 1.01 1.01 .54
Latency bound 1.00 3.00 3.00 5.00
Throughput bound .25 1.00 1.00 .5

CS33 Intro to Computer Systems XV–58 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Using Vector Instructions

• Make use of SSE Instructions
– parallel operations on multiple data elements

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.0 3.0 5.0
Achievable Scalar .52 1.01 1.01 .54
Latency bound 1.00 3.00 3.00 5.00
Throughput bound .25 1.00 1.00 .5
Achievable Vector .05 .24 .25 .16
Vector throughput
bound

.06 .12 .25 .12

CS33 Intro to Computer Systems XV–59 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Hyper Threading

Execution

Functional
Units

Integer/
Branch

FP
Add

FP
Mult/Div Load Store

Data
Cache

DataData

Addr. Addr.

General
Integer

Operation Results

Instruction Control

Instruction
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Retirement
Unit

Register
File

Instruction Control

Instruction
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Retirement
Unit

Register
File

CS33 Intro to Computer Systems XV–60 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Chip

Multiple Cores

Execution

Functional
Units

Instruction Control

Integer/
Branch

FP
Add

FP
Mult/Div Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

DataData

Addr. Addr.

General
Integer

Operation Results

Retirement
Unit

Register
File

Execution

Functional
Units

Instruction Control

Integer/
Branch

FP
Add

FP
Mult/Div Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

DataData

Addr. Addr.

General
Integer

Operation Results

Retirement
Unit

Register
File

More
Cache

Other Stuff Other Stuff

