CS 33

Architecture and Optimization (3)

Eliminate Unneeded Memory References

```
void combine4(vec_ptr_t v, data_t *dest) {
  int i;
  int length = vec_length(v);
  data_t *d = get_vec_start(v);
  data_t t = IDENT;
  for (i = 0; i < length; i++)
    t = t OP d[i];
  *dest = t;
}</pre>
```

Method	Inte	ger	Double FP	
Operation	Add	Mult	Add	Mult
Combine1 -O1	12.0	12.0	12.0	13.0
Combine4	2.0	3.0	3.0	5.0

Pipelined Data-Flow Over Multiple Iterations

Combine4 = Serial Computation (OP = *)

Computation (length=8)

- Sequential dependence
 - performance: determined by latency of OP

 $1 d_0$

Loop Unrolling

```
void unroll2x(vec_ptr_t v, data_t *dest)
    int length = vec length(v);
    int limit = length-1;
    data t *d = get vec start(v);
    data t x = IDENT;
    int i:
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2) {
       x = (x OP d[i]) OP d[i+1];
    /* Finish any remaining elements */
    for (; i < length; i++) {
       x = x OP d[i];
    *dest = x;
```

Perform 2x more useful work per iteration

Effect of Loop Unrolling

Method	Integer		Double FP	
Operation	Add	Mult	Add	Mult
Combine4	1.27	3.00	3.00	5.00
Unroll 2x	1.01	3.00	3.00	5.00
Latency bound	1.0	3.0	3.0	5.0
Throughput bound	0.25	1.0	1.0	0.5

- Helps integer add
 - reduces loop overhead
- Others don't improve. Why?
 - still sequential dependency

$$x = (x OP d[i]) OP d[i+1];$$

Loop Unrolling with Reassociation

```
void unroll2xra(vec ptr t v, data t *dest)
{
    int length = vec length(v);
    int limit = length-1;
    data t *d = get vec start(v);
    data t x = IDENT;
    int i:
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2) {
       x = x OP (d[i] OP d[i+1]);
    /* Finish any remaining elements */
    for (; i < length; i++) {</pre>
       x = x OP d[i];
                                   Compare to before
                                   x = (x OP d[i]) OP d[i+1];
    *dest = x;
```

- Can this change the result of the computation?
- Yes, for FP. Why?

Reassociated Computation

$$x = x OP (d[i] OP d[i+1]);$$

What changed:

 ops in the next iteration can be started early (no dependency)

Overall Performance

- N elements, D cycles latency/op
- should be (N/2+1)*D cycles:
 CPE = D/2
- measured CPE slightly worse for integer addition (there are other things going on)

Effect of Reassociation

Method	Inte	ger	Double FP	
Operation	Add	Mult	Add	Mult
Combine4	1.27	3.00	3.00	5.00
Unroll 2x	1.01	3.00	3.00	5.00
Unroll 2x, reassociate	1.01	1.51	1.51	2.51
Latency bound	1.0	3.0	3.0	5.0
Throughput bound	.25	1.0	1.0	.5

- Nearly 2x speedup for int *, FP +, FP *
 - reason: breaks sequential dependency

$$x = x OP (d[i] OP d[i+1]);$$

Loop Unrolling with Separate Accumulators

```
void unroll2xp2x(vec ptr t v, data t *dest)
    int length = vec length(v);
    int limit = length-1;
    data t *d = get vec start(v);
    data t x0 = IDENT;
    data t x1 = IDENT;
    int i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2) {
      x0 = x0 OP d[i];
      x1 = x1 OP d[i+1];
    /* Finish any remaining elements */
    for (; i < length; i++) {</pre>
       x0 = x0 \text{ OP d[i]};
    *dest = x0 OP x1;
```

Different form of reassociation

Effect of Separate Accumulators

Method	Integer		Double FP	
Operation	Add	Mult	Add	Mult
Combine4	1.27	3.00	3.00	5.00
Unroll 2x	1.01	3.00	3.00	5.00
Unroll 2x, reassociate	1.01	1.51	1.51	2.51
Unroll 2x parallel 2x	.81	1.51	1.51	2.51
Latency bound	1.0	3.0	3.0	5.0
Throughput bound	.25	1.0	1.0	.5

- 2x speedup (over unroll 2x) for int *, FP +, FP *
 - breaks sequential dependency in a "cleaner," more obvious way

```
x0 = x0 OP d[i];
x1 = x1 OP d[i+1];
```

Separate Accumulators

$$x0 = x0 \text{ OP d[i]};$$

 $x1 = x1 \text{ OP d[i+1]};$

What changed:

two independent "streams" of operations

Overall Performance

- N elements, D cycles latency/op
- should be (N/2+1)*D cycles:CPE = D/2
- Integer addition improved, but not yet at predicted value

What Now?

Quiz 1

We're making progress. With two accumulators we get a two-fold speedup. With three accumulators, we can get a three-fold speedup. How much better performance can we expect if we add even more accumulators?

- a) It keeps on getting better as we add more and more accumulators
- b) It's limited by the latency bound
- c) It's limited by the throughput bound
- d) It's limited by something else

Performance

- K-way loop unrolling with K accumulators
 - limited by number and throughput of functional units

Achievable Performance

Method	Integer		Double FP	
Operation	Add	Mult	Add	Mult
Combine4	1.27	3.0	3.0	5.0
Achievable scalar	.52	1.01	1.01	.54
Latency bound	1.00	3.00	3.00	5.00
Throughput bound	.25	1.00	1.00	.5

Using Vector Instructions

Method	Integer		Double FP	
Operation	Add	Mult	Add	Mult
Combine4	1.27	3.0	3.0	5.0
Achievable Scalar	.52	1.01	1.01	.54
Latency bound	1.00	3.00	3.00	5.00
Throughput bound	.25	1.00	1.00	.5
Achievable Vector	.05	.24	.25	.16
Vector throughput bound	.06	.12	.25	.12

Make use of SSE Instructions

- parallel operations on multiple data elements

Hyper Threading

Multiple Cores

Chip

Other Stuff

More Cache

Other Stuff

CS 33

Memory Hierarchy I

Random-Access Memory (RAM)

Key features

- RAM is traditionally packaged as a chip
- basic storage unit is normally a cell (one bit per cell)
- multiple RAM chips form a memory

Static RAM (SRAM)

- each cell stores a bit with a four- or six-transistor circuit
- retains value indefinitely, as long as it is kept powered
- relatively insensitive to electrical noise (EMI), radiation, etc.
- faster and more expensive than DRAM

Dynamic RAM (DRAM)

- each cell stores bit with a capacitor; transistor is used for access
- value must be refreshed every 10-100 ms
- more sensitive to disturbances (EMI, radiation,...) than SRAM
- slower and cheaper than SRAM

SRAM vs DRAM Summary

	Trans. per bit	Access time	Needs refresh?	Needs EDC?	Cost	Applications
SRAM	4 or 6	1X	No	Maybe	100x	Cache memories
DRAM	1	10X	Yes	Yes	1X	Main memories, frame buffers

- EDC = error detection and correction
 - to cope with noise, etc.

Conventional DRAM Organization

- dxwDRAM:
 - dw total bits organized as d supercells of size w bits

Reading DRAM Supercell (2,1)

Step 1(a): row access strobe (RAS) selects row 2

Step 1(b): row 2 copied from DRAM array to row buffer

Reading DRAM Supercell (2,1)

Step 2(a): column access strobe (CAS) selects column 1

Step 2(b): supercell (2,1) copied from buffer to data lines, and eventually back to the CPU

Memory Modules

Enhanced DRAMs

- Basic DRAM cell has not changed since its invention in 1966
 - commercialized by Intel in 1970
- DRAMs with better interface logic and faster I/O:
 - synchronous DRAM (SDRAM or SDR)
 - » uses a conventional clock signal instead of asynchronous control
 - » allows reuse of the row addresses (e.g., RAS, CAS, CAS, CAS)
 - double data-rate synchronous DRAM (DDR SDRAM)
 - » DDR1
 - twice as fast: 16 consecutive bytes xfr'd as fast as 8 in SDR
 - » DDR2
 - 4 times as fast: 32 consecutive bytes xfr'd as fast as 8 in SDR
 - » DDR3
 - 8 times as fast: 64 consecutive bytes xfr'd as fast as 8 in SDR

Enhanced DRAMs

DDR4

- Memory transfer speed increased by a factor of 16 (twice as fast as DDR3)
 - no increase in DRAM Cell Array speed (same as SDR)
 - 16 times more data transferred at once
 - » 64 adjacent bytes fetched from DRAM
 - just like DDR3

Quiz 2

A program is loading randomly selected bytes from memory. These bytes will be delivered to the processor on a DDR4 system at a speed that's n times that of an SDR system, where n is:

- a) 8
- b) 4
- c) 2
- d) 1

A Mismatch

- A processor clock cycle is ~0.3 nsecs
 - SunLab machines (Intel Core i5-4690) run at 3.5 GHz
- Basic operations take 1 10 clock cycles
 - -.3-3 nsecs
- Accessing memory takes 70-100 nsecs
- How is this made to work?

Caching to the Rescue

CPU

Cache

Cache Memories

- Cache memories are small, fast SRAM-based memories managed automatically in hardware
 - hold frequently accessed blocks of main memory
- CPU looks first for data in caches (e.g., L1, L2, and L3), then in main memory
- Typical system structure:

General Cache Concepts

General Cache Concepts: Hit

General Cache Concepts: Miss

General Caching Concepts: Types of Cache Misses

Cold (compulsory) miss

cold misses occur because the cache is empty

Conflict miss

- most caches limit blocks to a small subset (sometimes a singleton) of the block positions in RAM
 - » e.g., block i in RAM must be placed in block (i mod 4) in the cache
- conflict misses occur when the cache is large enough, but multiple data objects all map to the same cache block
 - » e.g., referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time

Capacity miss

 occurs when the set of active cache blocks (working set) is larger than the cache

General Cache Organization (S, E, B)

Example: Direct Mapped Cache (E = 1)

Direct mapped: one line per set Assume: cache block size 8 bytes

Example: Direct Mapped Cache (E = 1)

Direct mapped: one line per set Assume: cache block size 8 bytes

Example: Direct Mapped Cache (E = 1)

Direct mapped: one line per set Assume: cache block size 8 bytes

No match: old line is evicted and replaced

Direct-Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/block, S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0	[0 <u>00</u> 0 ₂],	miss
1	$[0001_2],$	hit
7	$[0111_2],$	miss
8	$[1000_{2}],$	miss
0	$[0000_2]$	miss

	V	Tag	Block
Set 0	1	0	M[0-1]
Set 1			
Set 2			
Set 3	1	0	M[6-7]

A Higher-Level Example

```
int sum_array_rows(double a[16][16])
{
    int i, j;
    double sum = 0;

    for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
    return sum;
}</pre>
```

```
int sum_array_cols(double a[16][16])
{
    int i, j;
    double sum = 0;

    for (j = 0; i < 16; i++)
        for (i = 0; j < 16; j++)
            sum += a[i][j];
    return sum;
}</pre>
```

Ignore the variables sum, i, j

assume: cold (empty) cache, a[0][0] goes here

A Higher-Level Example

```
int sum_array_rows(double a[16][16])
{
   int i, j;
   double sum = 0;

   for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
   return sum;
}</pre>
```

```
int sum_array_cols(double a[16][16])
{
   int i, j;
   double sum = 0;

   for (j = 0; i < 16; i++)
        for (i = 0; j < 16; j++)
            sum += a[i][j];
   return sum;
}</pre>
```


A Higher-Level Example

```
int sum_array_rows(double a[16][16])
{
   int i, j;
   double sum = 0;

   for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
   return sum;
}</pre>
```

```
int sum_array_cols(double a[16][16])
{
    int i, j;
    double sum = 0;

    for (j = 0; j < 16; i++)
        for (i = 0; i < 16; j++)
            sum += a[i][j];
    return sum;
}</pre>
```


Conflict Misses: Aligned

```
double dotprod(double x[8], double y[8]) {
  double sum = 0.0;
  int i;

for (i=0; i<8; i++)
    sum += x[i] * y[i];

return sum;
}</pre>
```


Different Alignments

```
double dotprod(double x[8], double y[8]) {
  double sum = 0.0;
  int i;

for (i=0; i<8; i++)
    sum += x[i] * y[i];

return sum;
}</pre>
```

