
CS33 Intro to Computer Systems XVIII–1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Architecture and the OS (2)

CS33 Intro to Computer Systems XVIII–2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Creating Your Own Processes

#include <unistd.h>

int main() {
 pid_t pid;

 if ((pid = fork()) == 0) {
 /* new process starts

 running here */

 }

 /* old process continues

 here */

}

CS33 Intro to Computer Systems XVIII–3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Creating a Process: Before

fork()

parent process

CS33 Intro to Computer Systems XVIII–4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Creating a Process: After

fork()
// returns p

parent process

fork()
// returns 0

child process
(pid = p)

CS33 Intro to Computer Systems XVIII–5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1
The following program

a) runs forever
b) terminates quickly

int flag;

int main() {

 while (flag == 0) {
 if (fork() == 0) {

 // in child process

 flag = 1;

 exit(0); // causes process to terminate

 }
 }

}

CS33 Intro to Computer Systems XVIII–6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Process IDs

int main() {
 pid_t pid;
 pid_t ParentPid = getpid();

 if ((pid = fork()) == 0) {
 printf("%d, %d, %d\n",
 pid, ParentPid, getpid());
 return 0;
 }
 printf("%d, %d, %d\n",
 pid, ParentPid, getpid());
 return 0;
}

parent prints:
 27355, 27342, 27342

child prints:
 0, 27342, 27355

CS33 Intro to Computer Systems XVIII–7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

.

.

.

.

.

.

if (fork() == 0){
 execv("prog",
 argv);
}

.

.

.

/* prog */

int main() {

}

Putting Programs into Processes

if (fork() == 0){
 execv("prog", argv);
}

.

.

.

.

.

.

fork

execv

CS33 Intro to Computer Systems XVIII–8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Exec

• Family of related system functions
– we concentrate on one:

» execv(program, argv)

char *argv[] = {"MyProg", "12", (void *)0};
if (fork() == 0) {
 execv("./MyProg", argv);
}

argv[0] is the name
of the program

Name of the file that
contains the program

First “real”
argument

End of
list

CS33 Intro to Computer Systems XVIII–9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Loading a New Image

execv(prog, argv)

Before

prog’s text

prog’s data

prog’s bss

args

After

CS33 Intro to Computer Systems XVIII–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

A Random Program …

int main(int argc, char *argv[]) {
 if (argc != 2) {
 fprintf(stderr, "Usage: random count\n");
 exit(1);
 }
 int stop = atoi(argv[1]);
 for (int i = 0; i < stop; i++)
 printf("%d\n", rand());
 return 0;
}

CS33 Intro to Computer Systems XVIII–11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Passing It Arguments

• From the shell
$ random 12

• From a C program
if (fork() == 0) {
 char *argv[] = {"random", "12", (void *)0};
 execv("./random", argv);

}

CS33 Intro to Computer Systems XVIII–12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2
if (fork() == 0) {
 char *argv[] = {"random", "12", (void *)0};
 execv("./random", argv);

 printf("random done\n");
}

The printf statement will be
executed

a) only if execv fails
b) only if execv succeeds
c) always

CS33 Intro to Computer Systems XVIII–13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Receiving Arguments
int main(int argc, char *argv[]) {
 if (argc != 2) {
 fprintf(stderr, "Usage: random count\n");
 exit(1);
 }
 int stop = atoi(argv[1]);
 for (int i = 0; i < stop; i++)
 printf("%d\n", rand());

 return 0;
}

1 2 \0

r a n d o m \0

argv

CS33 Intro to Computer Systems XVIII–14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Not So Fast …

• How does the shell invoke your program?

if (fork() == 0) {
 char *argv = {"random", "12", (void *)0};
 execv("./random", argv);
}
/* what does the shell do here??? */

CS33 Intro to Computer Systems XVIII–15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Wait

#include <unistd.h>
#include <sys/wait.h>
…

 pid_t pid;
 int status;
 …
 if ((pid = fork()) == 0) {
 char *argv[] = {"random", "12", (void *)0};
 execv("./random", argv);
 }

 waitpid(pid, &status, 0);

CS33 Intro to Computer Systems XVIII–16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Exit
#include <unistd.h>
#include <stdlib.h>
#include <sys/wait.h>
int main() {
 pid_t pid;
 int status;
 if ((pid = fork()) == 0) {
 if (do_work() == 1)
 exit(0); /* success! */
 else
 exit(1); /* failure … */
 }
 waitpid(pid, &status, 0);
 /* low-order byte of status contains exit code.
 WEXITSTATUS(status) extracts it */

exit code

CS33 Intro to Computer Systems XVIII–17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shell: To Wait or Not To Wait ...
$ who

if ((pid = fork()) == 0) {

 char *argv[] = {"who", 0};
 execv("who", argv);

}

waitpid(pid, &status, 0);

…

$ who &
if ((pid = fork()) == 0) {

 char *argv[] = {"who", 0};
 execv("who", argv);

}
…

CS33 Intro to Computer Systems XVIII–18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

System Calls

• Sole direct interface between user and kernel
• Implemented as library functions that execute trap

instructions to enter kernel
• Errors indicated by returns of –1; error code is in

global variable errno

if (write(fd, buffer, bufsize) == –1) {
// error!
printf("error %d\n", errno);
// see perror

}

CS33 Intro to Computer Systems XVIII–19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

System Calls

write(fd, buf, len)

kernel text

other stuff
kernel stack

trap into kernel User portion
of address
space

Kernel portion
of address
space

CS33 Intro to Computer Systems XVIII–20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

kernel data

other stuff
kernel stack

other stuff
kernel stack

other stuff
kernel stack

Multiple Processes

kernel text

CS33 Intro to Computer Systems XVIII–21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Shells and Files

CS33 Intro to Computer Systems XVIII–22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shells

• Command and scripting languages for Unix
• First shell: Thompson shell

– sh, developed by Ken Thompson
– released in 1971

• Bourne shell
– also sh, developed by Steve Bourne
– released in 1977

• C shell
– csh, developed by Bill Joy
– released in 1978
– tcsh, improved version by Ken Greer

CS33 Intro to Computer Systems XVIII–23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

More Shells

• Bourne-Again Shell
– bash, developed by Brian Fox
– released in 1989
– found to have a serious security-related bug in 2014

» shellshock

• Almquist Shell
– ash, developed by Kenneth Almquist
– released in 1989
– similar to bash
– dash (debian ash) used for scripts in Debian Linux

» faster than bash
» less susceptible to shellshock vulnerability

CS33 Intro to Computer Systems XVIII–24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Roadmap

• We explore the file abstraction
– what are files
– how do you use them
– how does the OS represent them

• We explore the shell
– how does it launch programs
– how does it connect programs with files
– how does it control running programs

shell 1

shell 2

CS33 Intro to Computer Systems XVIII–25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

The File Abstraction

• A file is a simple array of bytes
• A file is made larger by writing beyond its

current end
• Files are named by paths in a naming tree
• System calls on files are synchronous
• Files are permanent

CS33 Intro to Computer Systems XVIII–26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Naming

• (almost) everything has a path name
– files
– directories
– devices (known as special files)

» keyboards
» displays
» disks
» etc.

CS33 Intro to Computer Systems XVIII–27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

I/O System Calls

• int file_descriptor = open(pathname,
mode [, permissions])

• int close(file_descriptor)
• ssize_t count = read(file_descriptor,
buffer_address, buffer_size)

• ssize_t count = write(file_descriptor,
buffer_address, buffer_size)

• off_t position = lseek(file_descriptor,
offset, whence)

CS33 Intro to Computer Systems XVIII–28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Standard File Descriptors

int main() {
 char buf[BUFSIZE];
 int n;
 const char *note = "Write failed\n";

 while ((n = read(0, buf, sizeof(buf))) > 0)
 if (write(1, buf, n) != n) {
 write(2, note, strlen(note));
 exit(1);
 }
 return(0);
}

CS33 Intro to Computer Systems XVIII–29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Standard I/O Library

Formatting

Buffering stdin stdout stderr

Syscalls fd 0 fd 1 fd 2

…

…

printf scanf…

CS33 Intro to Computer Systems XVIII–30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Standard I/O

FILE *stdin; // declared in stdio.h
FILE *stdout; // declared in stdio.h
FILE *stderr; // declared in stdio.h

scanf("%d", &in); // read via f.d. 0
printf("%d\n", in); // write via f.d. 1
fprintf(stderr, "there was an error\n");

 // write via f.d. 2

CS33 Intro to Computer Systems XVIII–31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Buffered Output

x y z z y \n

printf("xy");

printf("zz");

printf("y\n");

buffer

display
x y z z y

CS33 Intro to Computer Systems XVIII–32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Unbuffered Output
fprintf(stderr, "xy");

fprintf(stderr, "zz");

fprintf(stderr, "y\n");

display
x y z z y

CS33 Intro to Computer Systems XVIII–33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

A Program
int main(int argc, char *argv[]) {
 if (argc != 2) {
 fprintf(stderr, "Usage: echon reps\n");
 exit(1);

 }
 int reps = atoi(argv[1]);
 if (reps > 2) {
 fprintf(stderr, "reps too large, reduced to 2\n");

 reps = 2;
 }
 char buf[256];
 while (fgets(buf, 256, stdin) != NULL)
 for (int i=0; i<reps; i++)
 fputs(buf, stdout);
 return(0);
}

CS33 Intro to Computer Systems XVIII–34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

From the Shell ...

$ echon 1
– stdout (fd 1) and stderr (fd 2) go to the display
– stdin (fd 0) comes from the keyboard

$ echon 1 > Output
– stdout goes to the file “Output” in the current

directory
– stderr goes to the display
– stdin comes from the keyboard

$ echon 1 < Input
– stdin comes from the file “Input” in the current

directory

CS33 Intro to Computer Systems XVIII–35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Redirecting Stdout in C
if ((pid = fork()) == 0) {
 /* set up file descriptor 1 in the child process */
 close(1);
 if (open("/home/twd/Output", O_WRONLY) == -1) {
 perror("/home/twd/Output");
 exit(1);
 }
 char *argv[] = {"echon", "2", NULL};
 execv("/home/twd/bin/echon", argv);
 exit(1);
}

/* parent continues here */

waitpid(pid, 0, 0); // wait for child to terminate

CS33 Intro to Computer Systems XVIII–36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

File-Descriptor Table

0
1
2
3

.

.

.

n–1

File-descriptor
table

File
descriptor

User
address space

Kernel address space

ref
count

access
mode

file
location

inode
pointer

File context structure

CS33 Intro to Computer Systems XVIII–37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

File Location

0
1
2
3

.

.

.

n–1

File-descriptor
table

File
descriptor

User
address space

Kernel address space

1 WRONLY 0 inode
pointer

File context structure

CS33 Intro to Computer Systems XVIII–38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

File Location

0
1
2
3

.

.

.

n–1

File-descriptor
table

File
descriptor

User
address space

Kernel address space

1 WRONLY 4 inode
pointer

File context structure
write(5, "abc", 4);

CS33 Intro to Computer Systems XVIII–39 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

File Location

0
1
2
3

.

.

.

n–1

File-descriptor
table

File
descriptor

User
address space

Kernel address space

1 WRONLY 12 inode
pointer

File context structure
lseek(5, 12,
 SEEK_SET);

CS33 Intro to Computer Systems XVIII–40 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Allocation of File Descriptors

• Whenever a process requests a new file
descriptor, the lowest-numbered file
descriptor not already associated with an
open file is selected; thus

 #include <fcntl.h>
 #include <unistd.h>

 close(0);
 fd = open("file", O_RDONLY);

– will always associate file with file descriptor 0
(assuming that open succeeds)

CS33 Intro to Computer Systems XVIII–41 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Redirecting Output … Twice
if (fork() == 0) {
 /* set up file descriptors 1 and 2 in the child process */
 close(1);
 close(2);

 if (open("/home/twd/Output", O_WRONLY) == -1) {
 exit(1);
 }
 if (open("/home/twd/Output", O_WRONLY) == -1) {
 exit(1);
 }
 char *argv[] = {"echon", 2, NULL};
 execv("/home/twd/bin/echon", argv);

 exit(1);
}
/* parent continues here */

CS33 Intro to Computer Systems XVIII–42 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

From the Shell ...

$ echon 1 >Output 2>Output
– both stdout and stderr go to Output file

CS33 Intro to Computer Systems XVIII–43 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Redirected Output

File-descriptor
table

File descriptor 1

User
address space

Kernel address space

File descriptor 2

1 WRONLY 0 inode
pointer

1 WRONLY 0 inode
pointer

CS33 Intro to Computer Systems XVIII–44 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Redirected Output After Write

File-descriptor
table

File descriptor 1

User
address space

Kernel address space

File descriptor 2

1 WRONLY 100 inode
pointer

1 WRONLY 0 inode
pointer

CS33 Intro to Computer Systems XVIII–45 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 3

• Suppose we run
$ echon 3 >Output 2>Output

• The input line is
X

• What is the final content of Output?

a) reps too large, reduced to 2\nX\nX\n
b) X\nX\nreps too large, reduced to 2\n
c) X\nX\n too large, reduced to 2\n

CS33 Intro to Computer Systems XVIII–46 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Sharing Context Information

if (fork() == 0) {
 /* set up file descriptors 1 and 2 in the child process */
 close(1);
 close(2);

 if (open("/home/twd/Output", O_WRONLY) == -1) {
 exit(1);
 }
 dup(1); /* set up file descriptor 2 as a duplicate of 1 */

 char *argv[] = {"echon", 2};
 execv("/home/twd/bin/echon", argv);
 exit(1);
}

/* parent continues here */

CS33 Intro to Computer Systems XVIII–47 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Redirected Output After Dup

File-descriptor
table

File descriptor 1

User
address space

Kernel address space

File descriptor 2

2 WRONLY 100 inode
pointer

CS33 Intro to Computer Systems XVIII–48 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

From the Shell ...

$ echon 3 >Output 2>&1
– stdout goes to Output file, stderr is the dup of fd 1

– with input “X\n” it now produces in Output:

reps too large, reduced to 2\nX\nX\n

CS33 Intro to Computer Systems XVIII–49 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Fork and File Descriptors

int logfile = open("log", O_WRONLY);
if (fork() == 0) {
 /* child process computes something, then does: */
 write(logfile, LogEntry, strlen(LogEntry));

 …
 exit(0);
}

/* parent process computes something, then does: */

write(logfile, LogEntry, strlen(LogEntry));
…

CS33 Intro to Computer Systems XVIII–50 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

File Descriptors After Fork

logfile

Parent’s
address space

Kernel address space

2 WRONLY 0 inode
pointer

logfile

Child’s
address space

CS33 Intro to Computer Systems XVIII–51 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 4
int main() {

 if (fork() == 0) {
 fprintf(stderr, "Child");

 exit(0);

 }

 fprintf(stderr, "Parent");

}

Suppose the program is run as:
$ prog >file 2>&1

What is the final content of file? (Assume writes are “atomic”.)
a) either “Childt” or “Parent”
b) either “Child” or “Parent”
c) either “ChildParent” or “ParentChild”

