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CS 33
Architecture and the OS (2)
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Creating Your Own Processes

#include <unistd.h>

int main( ) {
 pid_t pid;

 if ((pid = fork()) == 0) {
  /* new process starts

     running here */

 }

 /* old process continues

    here */

}
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Creating a Process: Before

fork( )

parent process
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Creating a Process: After

fork( )
// returns p

parent process

fork( )
// returns 0

child process 
(pid = p)
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Quiz 1
The following program

a) runs forever
b) terminates quickly

int flag;

int main() {

  while (flag == 0) {
    if (fork() == 0) {

 // in child process

      flag = 1;

      exit(0);  // causes process to terminate

    }
  }

}
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Process IDs

int main( ) {
 pid_t pid;
 pid_t ParentPid = getpid();

 if ((pid = fork()) == 0) {
  printf("%d, %d, %d\n",
   pid, ParentPid, getpid());
  return 0;
 }
 printf("%d, %d, %d\n",
   pid, ParentPid, getpid());
  return 0;
}

parent prints:
  27355, 27342, 27342

child prints:
  0, 27342, 27355
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if (fork() == 0){
  execv("prog",
    argv);
}

.
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/* prog */

int main() {

}

Putting Programs into Processes

if (fork() == 0){
  execv("prog", argv);
}

.

.

.

.

.

.

fork

execv
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Exec

• Family of related system functions
– we concentrate on one:

» execv(program,  argv)

char *argv[] = {"MyProg", "12", (void *)0};
if (fork() == 0) { 
  execv("./MyProg", argv);
}

argv[0] is the name 
of the program

Name of the file that 
contains the program

First “real” 
argument

End of 
list



CS33 Intro to Computer Systems XVIII–9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Loading a New Image

execv(prog, argv)

Before

prog’s text

prog’s data

prog’s bss

args

After



CS33 Intro to Computer Systems XVIII–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

A Random Program …

int main(int argc, char *argv[]) {
 if (argc != 2) {
    fprintf(stderr, "Usage: random count\n");
    exit(1);
  }
  int stop = atoi(argv[1]);
  for (int i = 0; i < stop; i++)
    printf("%d\n", rand());
  return 0;
}
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Passing It Arguments

• From the shell
$ random 12

• From a C program
if (fork() == 0) {
  char *argv[] = {"random", "12", (void *)0};
  execv("./random", argv);

}
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Quiz 2
if (fork() == 0) {
  char *argv[] = {"random", "12", (void *)0};
  execv("./random", argv);

  printf("random done\n");
}

The printf statement will be 
executed

a) only if execv fails
b) only if execv succeeds
c) always
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Receiving Arguments
int main(int argc, char *argv[]) {
  if (argc != 2) {
    fprintf(stderr, "Usage: random count\n");
    exit(1);
  }
  int stop = atoi(argv[1]);
  for (int i = 0; i < stop; i++)
    printf("%d\n", rand());

  return 0;
}

1 2 \0

r a n d o m \0

argv
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Not So Fast …

• How does the shell invoke your program?

if (fork() == 0) {
  char *argv = {"random", "12", (void *)0};
  execv("./random", argv);
}
/* what does the shell do here??? */
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Wait

#include <unistd.h>
#include <sys/wait.h>
…

  pid_t pid;
  int status;
  …
  if ((pid = fork()) == 0) {
    char *argv[] = {"random", "12", (void *)0};
    execv("./random", argv);
  }

 waitpid(pid, &status, 0);
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Exit
#include <unistd.h>
#include <stdlib.h>
#include <sys/wait.h>
int main( ) {
  pid_t pid;
  int status;
  if ((pid = fork()) == 0) {
    if (do_work() == 1)
      exit(0); /* success! */
    else
      exit(1); /* failure … */
  }
 waitpid(pid, &status, 0);
 /* low-order byte of status contains exit code.
     WEXITSTATUS(status) extracts it */

exit code
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Shell: To Wait or Not To Wait ...
$ who

if ((pid = fork()) == 0) {

   char *argv[] = {"who", 0};
   execv("who", argv);

}

waitpid(pid, &status, 0);

…

$ who &
if ((pid = fork()) == 0) {

   char *argv[] = {"who", 0};
   execv("who", argv);

}
…
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System Calls

• Sole direct interface between user and kernel
• Implemented as library functions that execute trap 

instructions to enter kernel
• Errors indicated by returns of –1; error code is in 

global variable errno

if (write(fd, buffer, bufsize) == –1) {
// error!
printf("error %d\n", errno);
// see perror

}
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System Calls

write(fd, buf, len)

kernel text

other stuff
kernel stack

trap into kernel User portion 
of address 
space

Kernel portion 
of address 
space
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kernel data

other stuff
kernel stack

other stuff
kernel stack

other stuff
kernel stack

Multiple Processes

kernel text
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CS 33
Shells and Files
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Shells

• Command and scripting languages for Unix
• First shell: Thompson shell

– sh, developed by Ken Thompson
– released in 1971

• Bourne shell
– also sh, developed by Steve Bourne
– released in 1977

• C shell
– csh, developed by Bill Joy
– released in 1978
– tcsh, improved version by Ken Greer
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More Shells 

• Bourne-Again Shell
– bash, developed by Brian Fox
– released in 1989
– found to have a serious security-related bug in 2014

» shellshock

• Almquist Shell
– ash, developed by Kenneth Almquist
– released in 1989
– similar to bash
– dash (debian ash) used for scripts in Debian Linux

» faster than bash
» less susceptible to shellshock vulnerability
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Roadmap

• We explore the file abstraction
– what are files
– how do you use them
– how does the OS represent them

• We explore the shell
– how does it launch programs
– how does it connect programs with files
– how does it control running programs

shell 1

shell 2
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The File Abstraction

• A file is a simple array of bytes
• A file is made larger by writing beyond its 

current end
• Files are named by paths in a naming tree
• System calls on files are synchronous
• Files are permanent
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Naming

• (almost) everything has a path name
– files
– directories
– devices (known as special files)

» keyboards
» displays
» disks
» etc.
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I/O System Calls

• int file_descriptor = open(pathname,
mode [, permissions])

• int close(file_descriptor)
• ssize_t count = read(file_descriptor, 
buffer_address, buffer_size)

• ssize_t count = write(file_descriptor, 
buffer_address, buffer_size)

• off_t position = lseek(file_descriptor, 
offset, whence)
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Standard File Descriptors

int main( ) {
 char buf[BUFSIZE];
 int n;
 const char *note = "Write failed\n";

 while ((n = read(0, buf, sizeof(buf))) > 0)
  if (write(1, buf, n) != n) {
   write(2, note, strlen(note));
   exit(1);
  }
 return(0);
}
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Standard I/O Library

Formatting

Buffering stdin stdout stderr

Syscalls fd 0 fd 1 fd 2

…

…

printf scanf…
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Standard I/O

FILE *stdin;        // declared in stdio.h
FILE *stdout;       // declared in stdio.h
FILE *stderr;       // declared in stdio.h

scanf("%d", &in);   // read via f.d. 0
printf("%d\n", in); // write via f.d. 1
fprintf(stderr, "there was an error\n");

     // write via f.d. 2
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Buffered Output

x y z z y \n

printf("xy");

printf("zz");

printf("y\n");

buffer

display
x y z z y
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Unbuffered Output
fprintf(stderr, "xy");

fprintf(stderr, "zz");

fprintf(stderr, "y\n");

display
x y z z y



CS33 Intro to Computer Systems XVIII–33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

A Program
int main(int argc, char *argv[]) {
  if (argc != 2) {
    fprintf(stderr, "Usage: echon reps\n");
    exit(1);

  }
  int reps = atoi(argv[1]);
  if (reps > 2) {
    fprintf(stderr, "reps too large, reduced to 2\n");

    reps = 2;
  }
 char buf[256];
 while (fgets(buf, 256, stdin) != NULL)
    for (int i=0; i<reps; i++)
      fputs(buf, stdout);
  return(0);
}
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From the Shell ...

$ echon 1
– stdout (fd 1) and stderr (fd 2) go to the display
– stdin (fd 0) comes from the keyboard

$ echon 1 > Output
– stdout goes to the file “Output” in the current 

directory
– stderr goes to the display
– stdin comes from the keyboard

$ echon 1 < Input
– stdin comes from the file “Input” in the current 

directory
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Redirecting Stdout in C
if ((pid = fork()) == 0) {
   /* set up file descriptor 1 in the child process */
   close(1);
   if (open("/home/twd/Output", O_WRONLY) == -1) {
      perror("/home/twd/Output");
      exit(1);
   }
   char *argv[] = {"echon", "2", NULL};
   execv("/home/twd/bin/echon", argv);
   exit(1);
}

/* parent continues here */

waitpid(pid, 0, 0);     // wait for child to terminate
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File-Descriptor Table

0
1
2
3

.

.

.

n–1 

File-descriptor
table

File 
descriptor

User
address space

Kernel address space

ref
count

access
mode

file
location

inode
pointer

File context structure
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File Location

0
1
2
3

.

.

.

n–1 

File-descriptor
table

File 
descriptor

User
address space

Kernel address space

1 WRONLY 0 inode
pointer

File context structure
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File Location

0
1
2
3

.

.

.

n–1 

File-descriptor
table

File 
descriptor

User
address space

Kernel address space

1 WRONLY 4 inode
pointer

File context structure
write(5, "abc", 4);
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File Location

0
1
2
3

.

.

.

n–1 

File-descriptor
table

File 
descriptor

User
address space

Kernel address space

1 WRONLY 12 inode
pointer

File context structure
lseek(5, 12,
    SEEK_SET);
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Allocation of File Descriptors

• Whenever a process requests a new file 
descriptor, the lowest-numbered file 
descriptor not already associated with an 
open file is selected; thus

  #include <fcntl.h>
  #include <unistd.h>

  close(0);
  fd = open("file", O_RDONLY);

– will always associate file with file descriptor 0 
(assuming that open succeeds)
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Redirecting Output … Twice
if (fork() == 0) {
   /* set up file descriptors 1 and 2 in the child process */
   close(1);
   close(2);

   if (open("/home/twd/Output", O_WRONLY) == -1) {
      exit(1);
   }
   if (open("/home/twd/Output", O_WRONLY) == -1) {
      exit(1);
   }
   char *argv[] = {"echon", 2, NULL};
   execv("/home/twd/bin/echon", argv);

   exit(1);
}
/* parent continues here */
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From the Shell ...

$ echon 1 >Output 2>Output
– both stdout and stderr go to Output file
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Redirected Output

File-descriptor
table

File descriptor 1

User
address space

Kernel address space

File descriptor 2

1 WRONLY 0 inode
pointer

1 WRONLY 0 inode
pointer



CS33 Intro to Computer Systems XVIII–44 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Redirected Output After Write

File-descriptor
table

File descriptor 1

User
address space

Kernel address space

File descriptor 2

1 WRONLY 100 inode
pointer

1 WRONLY 0 inode
pointer
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Quiz 3

• Suppose we run
$ echon 3 >Output 2>Output

• The input line is
X

• What is the final content of Output?

a) reps too large, reduced to 2\nX\nX\n
b) X\nX\nreps too large, reduced to 2\n
c) X\nX\n too large, reduced to 2\n
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Sharing Context Information

if (fork() == 0) {
   /* set up file descriptors 1 and 2 in the child process */
   close(1);
   close(2);

   if (open("/home/twd/Output", O_WRONLY) == -1) {
      exit(1);
   }
   dup(1); /* set up file descriptor 2 as a duplicate of 1 */

   char *argv[] = {"echon", 2};
   execv("/home/twd/bin/echon", argv);
   exit(1);
}

/* parent continues here */
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Redirected Output After Dup

File-descriptor
table

File descriptor 1

User
address space

Kernel address space

File descriptor 2

2 WRONLY 100 inode
pointer
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From the Shell ...

$ echon 3 >Output 2>&1
– stdout goes to Output file, stderr is the dup of fd 1

– with input “X\n” it now produces in Output:

reps too large, reduced to 2\nX\nX\n
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Fork and File Descriptors

int logfile = open("log", O_WRONLY);
if (fork() == 0) {
   /* child process computes something, then does: */
   write(logfile, LogEntry, strlen(LogEntry));

   …
   exit(0);
}

/* parent process computes something, then does: */

write(logfile, LogEntry, strlen(LogEntry));
…
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File Descriptors After Fork

logfile

Parent’s
address space

Kernel address space

2 WRONLY 0 inode
pointer

logfile

Child’s
address space
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Quiz 4
int main() {

  if (fork() == 0) {
    fprintf(stderr, "Child");

    exit(0);

  }

  fprintf(stderr, "Parent");

}

Suppose the program is run as:
$ prog >file 2>&1

What is the final content of file? (Assume writes are “atomic”.)
a) either “Childt” or “Parent”
b) either “Child” or “Parent”
c) either “ChildParent” or “ParentChild”


