
CS33 Intro to Computer Systems XX–1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Files Part 3

CS33 Intro to Computer Systems XX–2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Directories

unix etc home pro dev

twdpasswd motd

unix ...

slide1 slide2

CS33 Intro to Computer Systems XX–3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Directory Representation

Component Name Inode Number

unix 117
etc 4

home 18
pro 36
dev 93

directory entry

. 1
.. 1

CS33 Intro to Computer Systems XX–4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Hard Links

unix etc home pro dev

twd

image motd
unix ...

slide1 slide2

$ ln /unix /etc/image

link system call

CS33 Intro to Computer Systems XX–5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Directory Representation

unix 117
etc 4

home 18
pro 36
dev 93

. 4
.. 1

image 117
motd 33

. 1
.. 1

CS33 Intro to Computer Systems XX–6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Symbolic Links

unix etc home pro dev

twd

image twd
unix ...

slide1 slide2

% ln –s /unix /home/twd/mylink

% ln –s /home/twd /etc/twd

symlink system call

mylink

/unix/home/twd

CS33 Intro to Computer Systems XX–7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Working Directory

• Maintained in kernel for each process
– paths not starting from “/” start with the working

directory
– changed by use of the chdir system call

» cd shell command
– displayed (via shell) using “pwd”

» how is this done?

CS33 Intro to Computer Systems XX–8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Open

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(const char *path, int options [, mode_t mode])

– options
» O_RDONLY open for reading only
» O_WRONLY open for writing only
» O_RDWR open for reading and writing
» O_APPEND set the file offset to end of file prior to each

 write
» O_CREAT if the file does not exist, then create it,

 setting its mode to mode adjusted by umask
» O_EXCL if O_EXCL and O_CREAT are set, then

 open fails if the file exists
» O_TRUNC delete any previous contents of the file

CS33 Intro to Computer Systems XX–9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Appending Data to a File (1)

int fd = open("file", O_WRONLY);
lseek(fd, 0, SEEK_END);
 // sets the file location to the end
write(fd, buffer, bsize);
 // does this always write to the

 // end of the file?

CS33 Intro to Computer Systems XX–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Appending Data to a File (2)

int fd = open("file", O_WRONLY | O_APPEND);
write(fd, buffer, bsize);
 // this is guaranteed to write to the
 // end of the file

CS33 Intro to Computer Systems XX–11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

In the Shell ...

% program >> file

CS33 Intro to Computer Systems XX–12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

File Access Permissions

• Who’s allowed to do what?
– who

» user (owner)
» group
» others (rest of the world)

– what
» read
» write
» execute

CS33 Intro to Computer Systems XX–13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Permissions Example

$ ls -lR
.:
total 2
drwxr-x--x 2 joe adm 1024 Dec 17 13:34 A
drwxr----- 2 joe adm 1024 Dec 17 13:34 B

./A:
total 1
-rw-rw-rw- 1 joe adm 593 Dec 17 13:34 x

./B:
total 2
-r--rw-rw- 1 joe adm 446 Dec 17 13:34 x
-rw----rw- 1 angie adm 446 Dec 17 13:45 y

adm group:
joe, angie

CS33 Intro to Computer Systems XX–14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Setting File Permissions

#include <sys/types.h>
#include <sys/stat.h>
int chmod(const char *path, mode_t mode)

– sets the file permissions of the given file to those
specified in mode

– only the owner of a file and the superuser may change
its permissions

– nine combinable possibilities for mode
(read/write/execute for user, group, and others)
» S_IRUSR (0400), S_IWUSR (0200), S_IXUSR (0100)
» S_IRGRP (040), S_IWGRP (020), S_IXGRP (010)
» S_IROTH (04), S_IWOTH (02), S_IXOTH (01)

CS33 Intro to Computer Systems XX–15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Permission Bits

• It’s worth your while to remember this!
– read: 4
– write: 2
– execute: 1
– read/write: 6
– read/write/execute: 7

– user:group:others
» 0751

• rwx for user, rx for group, x for others
» 0640

• rw for user, r for group, nothing for others

CS33 Intro to Computer Systems XX–16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Umask

• Standard programs create files with
“maximum needed permissions” as mode
– compilers: 0777
– editors: 0666

• Per-process parameter, umask, used to turn
off undesired permission bits
– e.g., turn off all permissions for others, write

permission for group: set umask to 027
» compilers: permissions = 0777 & ~(027) = 0750
» editors: permissions = 0666 & ~(027) = 0640

– set with umask system call or (usually) shell
command

CS33 Intro to Computer Systems XX–17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1

You get the following message when you
attempt to execute ./program (a file that you
own):
bash: ./program: Permission denied
You’re first response should be:
a) find the source code for program and

recompile it
b) execute the shell command

chmod 0644 program

c) execute the shell command
chmod 0755 program

d) make an Ed post

CS33 Intro to Computer Systems XX–18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Creating a File

• Use either open or creat
– open(const char *pathname, int flags, mode_t mode)

» flags must include O_CREAT
– creat(const char *pathname, mode_t mode)

» open is preferred

• The mode parameter helps specify the permissions of
the newly created file
– permissions = mode & ~umask

CS33 Intro to Computer Systems XX–19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count is
 // incremented by 1

1 RDONLY 0 inode
pointer

CS33 Intro to Computer Systems XX–20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count
 // incremented by 1

unlink("n1");
 // link count decremented by 1
 // same effect in shell via “rm n1”

1 RDONLY 0 inode
pointer

1

CS33 Intro to Computer Systems XX–21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count
 // incremented by 1

unlink("n1");
 // link count decremented by 1

close(fd);
 // reference count decremented by 1

1 RDONLY 0 inode
pointer

1
0

CS33 Intro to Computer Systems XX–22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count
 // incremented by 1

unlink("n1");
 // link count decremented by 1

close(fd);
 // reference count decremented by 1

1
0

CS33 Intro to Computer Systems XX–23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 1
reference count == 0

unlink("dir1/n2");
 // link count decremented by 1

0

CS33 Intro to Computer Systems XX–24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2
int main() {
 int fd = open("file", O_RDWR|O_CREAT, 0666);
 unlink("file");
 PutStuffInFile(fd);

 GetStuffFromFile(fd);

 return 0;
}

Assume that PutStuffInFile writes to the given file, and
GetStuffFromFile reads from the file.
a) This program is doomed to failure, since the file is

deleted before it’s used
b) Because the file is used after the unlink call, it won’t be

deleted
c) The file will be deleted when the program terminates

CS33 Intro to Computer Systems XX–25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Interprocess Communication
(IPC): Pipes

CS33 Intro to Computer Systems XX–26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Interprocess Communication:
Same Machine I

Kernel buffer

CS33 Intro to Computer Systems XX–27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Interprocess Communication:
Same Machine II

Shared Memory

process
1

process
2

CS33 Intro to Computer Systems XX–28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Interprocess Communication:
Different Machines

Internet

CS33 Intro to Computer Systems XX–29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Pipes

$cslab2e who | wc -l

pipewho wc -l

CS33 Intro to Computer Systems XX–30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Using Pipes in C

$cslab2e who | wc -l

int fd[2];
pipe(fd);
if (fork() == 0) {
 close(fd[0]);
 close(1);
 dup(fd[1]); close(fd[1]);
 execl("/usr/bin/who", "who", 0); // who sends output to pipe
}
if (fork() == 0) {
 close(fd[1]);
 close(0);
 dup(fd[0]); close(fd[0]);
 execl("/usr/bin/wc", "wc", "-l", 0); // wc’s input is from pipe
}
close(fd[1]); close(fd[0]);
// …

pipefd[1] fd[0]

CS33 Intro to Computer Systems XX–31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 3

We would like the output of prog1 be the input
of prog2. Rather than use a pipe, we do the
following:
$ prog1 >file &
$ prog2 <file

Would this work?

a) never
b) sometimes
c) always

CS33 Intro to Computer Systems XX–32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shell 1: Artisanal Coding
while ((line = get_a_line()) != 0) {
 tokens = parse_line(line);

 for (int i=0; i < ntokens; i++) {
 if (strcmp(tokens[i], ">") == 0) {
 // handle output redirection

 } else if (strcmp(tokens[i], "<") == 0) {
 // handle input redirection

 } else if (strcmp(tokens[i], "&") == 0) {
 // handle "no wait"
 } ... else {
 // handle other cases

 }
 }

 if (fork() == 0) {
 // ...
 execv(...);

 }
 // ...

}

CS33 Intro to Computer Systems XX–33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (1)
while ((line = get_a_line()) != 0) {
 tokens = parse_line(line);

 for (int i=0; i < ntokens; i++) {
 // handle "normal" case

 }

 if (fork() == 0) {
 // ...

 execv(...);

 }
 // ...

}

CS33 Intro to Computer Systems XX–34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (2)
next_line: while ((line = get_a_line()) != 0) {
 tokens = parse_line(line);

 for (int i=0; i < ntokens; i++) {
 if (redirection_symbol(token[i])) {
 // ...

 if (fork() == 0) {
 // ...

 execv(...);

 }
 // ...

 goto next_line;

 }
 // handle "normal" case

 }

 if (fork() == 0) {
 // ...

 execv(...);
 }

 // ...

}

whoops!

(whoops!)

CS33 Intro to Computer Systems XX–35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (3)
next_line: while ((line = get_a_line()) != 0) {
 tokens = parse_line(line);

 for (int i=0; i < ntokens; i++) {
 if (redirection_symbol(token[i])) {
 // ...

 if (fork() == 0) {
 // ...

 execv(...);

 }
 // ... deal with &
 goto next_line;

 }
 // handle "normal" case

 }

 if (fork() == 0) {
 // ...

 execv(...);
 }

 // ... also deal with & here!
}

CS33 Intro to Computer Systems XX–36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (Worse)
next_line: while ((line = get_a_line()) != 0) {
tokens = parse_line(line);

for (int i=0; i < ntokens; i++) {
if (redirection_symbol(token[i])) {
// ...

if (fork() == 0) {
// ...

execv(...);

}
// ... deal with &

goto next_line;

}
// handle "normal" case

}

if (fork() == 0) {
// ...

execv(...);
}

// ... also deal with & here!

}

CS33 Intro to Computer Systems XX–37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Artisanal Programming

• Factor your code!
– A; FE | B; FE | C; FE = (A | B | C); FE

• Format as you write!
– donʼt run the formatter only just before handing it in
– your code should always be well formatted

• If you have a tough time understanding your
code, youʼll have a tougher time debugging it
and TAs will have an even tougher time
helping you

CS33 Intro to Computer Systems XX–38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Itʼs Your Code

• Be proud of it!
– it not only works; it shows skillful artisanship

• Itʼs not enough to merely work
– others have to understand it

» (not to mention you ...)
– you (and others) have to maintain it

» shell 2 is coming soon!

