
CS33 Intro to Computer Systems XX–1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Files Part 3

Here is a portion of a Unix directory tree. The ovals represent files, the rectangles
represent directories (which are really just special cases of files).

CS33 Intro to Computer Systems XX–2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Directories

unix etc home pro dev

twdpasswd motd

unix ...

slide1 slide2

A simple implementation of a directory consists of an array of pairs of component name
and inode number, where the latter identifies the target file’s inode to the operating
system (an inode is data structure maintained by the operating system that represents a
file). Note that every directory contains two special entries, “.” and “..”. The former refers
to the directory itself, the latter to the directory’s parent (in the case of the slide, the
directory is the root directory and has no parent, thus its “..” entry is a special case that
refers to the directory itself).

While this implementation of a directory was used in early file systems for Unix, it
suffers from a number of practical problems (for example, it doesn’t scale well for large
directories). It provides a good model for the semantics of directory operations, but
directory implementations on modern systems are more complicated than this (and are
beyond the scope of this course).

CS33 Intro to Computer Systems XX–3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Directory Representation

Component Name Inode Number

unix 117
etc 4

home 18
pro 36
dev 93

directory entry

. 1
.. 1

Here are two directory entries referring to the same file. This is done, via the shell,
through the ln command which creates a (hard) link to its first argument, giving it the
name specified by its second argument.
The shell’s “ln” command is implemented using the link system call.

CS33 Intro to Computer Systems XX–4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Hard Links

unix etc home pro dev

twd

image motd
unix ...

slide1 slide2

$ ln /unix /etc/image

link system call

Here are the (abbreviated) contents of both the root (/) and /etc directories, showing
how /unix and /etc/image are the same file. Note that if the directory entry /unix is
deleted (via the shell’s “rm” command), the file (represented by inode 117) continues to
exist, since there is still a directory entry referring to it. However, if /etc/image is also
deleted, then the file has no more links and is removed. To implement this, the file’s
inode contains a link count, indicating the total number of directory entries that refer to
it. A file is actually deleted only when its inode’s link count reaches zero.

Note: suppose a file is open, i.e. is being used by some process, when its link count
becomes zero. Rather than delete the file while the process is using it, the file will
continue to exist until no process has it open. Thus the inode also contains a reference
count indicating how many times it is open: in particular, how many system file table
entries point to it. A file is deleted when and only when both the link count and this
reference count become zero.

The shell’s “rm” command is implemented using the unlink system call.

Note that /etc/.. refers to the root directory.

CS33 Intro to Computer Systems XX–5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Directory Representation

unix 117
etc 4

home 18
pro 36
dev 93

. 4
.. 1

image 117
motd 33

. 1
.. 1

Differing from a hard link, a symbolic link (often called soft link) is a special kind of file
containing the name of another file. When the kernel processes such a file, rather than
simply retrieving its contents, it makes use of the contents by replacing the portion of
the directory path that it has already followed with the contents of the soft-link file and
then following the resulting path. Thus referencing /home/twd/mylink results in the
same file as referencing /unix. Referencing /etc/twd/unix/slide1 results in the same
file as referencing /home/twd/unix/slide1.

The shell’s “ln” command with the “-s” flag is implemented using the symlink system
call.

CS33 Intro to Computer Systems XX–6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Symbolic Links

unix etc home pro dev

twd

image twd
unix ...

slide1 slide2
% ln –s /unix /home/twd/mylink

% ln –s /home/twd /etc/twd
symlink system call

mylink

/unix/home/twd

The working directory is maintained in the kernel for each process. Whenever a
process attempts to follow a path that doesn’t start with “/”, it starts at its working
directory (rather than at “/”).

CS33 Intro to Computer Systems XX–7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Working Directory

• Maintained in kernel for each process
– paths not starting from “/” start with the working

directory
– changed by use of the chdir system call

» cd shell command
– displayed (via shell) using “pwd”

» how is this done?

Here’s a partial list of the options available as the second argument to open. (Further
options are often available, but they depend on the version of Unix.) Note that the first
three options are mutually exclusive: one, and only one, must be supplied. We discuss
the third argument to open, mode, in the next few slides.

CS33 Intro to Computer Systems XX–8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Open

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(const char *path, int options [, mode_t mode])

– options
» O_RDONLY open for reading only
» O_WRONLY open for writing only
» O_RDWR open for reading and writing
» O_APPEND set the file offset to end of file prior to each

 write
» O_CREAT if the file does not exist, then create it,

 setting its mode to mode adjusted by umask
» O_EXCL if O_EXCL and O_CREAT are set, then

 open fails if the file exists
» O_TRUNC delete any previous contents of the file

We'd like to write data to the end of a file. One approach, shown here, is to use the lseek
system call to set the file location in the file context structure to the end of the file. Once
this is done, then when we write to the file, we're writing to its end and thus are
appending data to the file.

However, this assumes that no other program is writing data to the end of the file at the
same time. If another program were doing this, then the file could grow between our
calls to lseek and write. If this happens, then the write would no longer be to the end of
the file but would overwrite the data written by the other program.

CS33 Intro to Computer Systems XX–9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Appending Data to a File (1)

int fd = open("file", O_WRONLY);
lseek(fd, 0, SEEK_END);

 // sets the file location to the end
write(fd, buffer, bsize);
 // does this always write to the
 // end of the file?

By using the O_APPEND option of open, we make certain that writes on this file
descriptor are always to the end of file. If another program is doing this at the same
time, the operating system makes certain that one doesn't start until after the other
ends.

CS33 Intro to Computer Systems XX–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Appending Data to a File (2)

int fd = open("file", O_WRONLY | O_APPEND);
write(fd, buffer, bsize);

 // this is guaranteed to write to the
 // end of the file

The ">>" operator tells the shell to open file with the O_APPEND flag so that writes are
always to the end of the file.

CS33 Intro to Computer Systems XX–11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

In the Shell ...

% program >> file

Each file has associated with it a set of access permissions indicating, for each of three
classes of principals, what sorts of operations on the file are allowed. The three classes
are the owner of the file, known as user, the group owner of the file, known simply as
group, and everyone else, known as others. The operations are grouped into the classes
read, write, and execute, with their obvious meanings. The access permissions apply to
directories as well as to ordinary files, though the meaning of execute for directories is
not quite so obvious: one must have execute permission for a directory file in order to
follow a path through it.

The system, when checking permissions, first determines the smallest class of principals
the requester belongs to: user (smallest), group, or others (largest). It then, within the
chosen class, checks for appropriate permissions.

CS33 Intro to Computer Systems XX–12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

File Access Permissions

• Who’s allowed to do what?
– who

» user (owner)
» group
» others (rest of the world)

– what
» read
» write
» execute

The ls –lR command lists the contents of the current directory, its subdirectories,
their subdirectories, etc. in long format (the l causes the latter, the R the former).

In the current directory are two subdirectories, A and B, with access permissions as
shown in the slide. Note that the permissions are given as a string of characters: the
first character indicates whether or not the file is a directory, the next three characters
are the permissions for the owner of the file, the next three are the permissions for the
members of the file’s group’s members, and the last three are the permissions for the
rest of the world.

Quiz: the users joe and angie are members of the adm group; leo is not.

• May leo list the contents of directory A?

• May leo read A/x?

• May angie list the contents of directory B?

• May angie modify B/y?

• May joe modify B/x?

CS33 Intro to Computer Systems XX–13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Permissions Example

$ ls -lR
.:
total 2
drwxr-x--x 2 joe adm 1024 Dec 17 13:34 A
drwxr----- 2 joe adm 1024 Dec 17 13:34 B

./A:
total 1
-rw-rw-rw- 1 joe adm 593 Dec 17 13:34 x

./B:
total 2
-r--rw-rw- 1 joe adm 446 Dec 17 13:34 x
-rw----rw- 1 angie adm 446 Dec 17 13:45 y

adm group:
joe, angie

• May joe read B/y?

The chmod system call (and the similar chmod shell command) is used to change the
permissions of a file. Note that the symbolic names for the permissions are rather
cumbersome; what is often done is to use their numerical equivalents instead. Thus, for
example, the combination of read/write/execute permission for the user (0700),
read/execute permission for the group (050), and execute-only permission for others
(01) can be specified simply as 0751.

CS33 Intro to Computer Systems XX–14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Setting File Permissions

#include <sys/types.h>
#include <sys/stat.h>
int chmod(const char *path, mode_t mode)

– sets the file permissions of the given file to those
specified in mode

– only the owner of a file and the superuser may change
its permissions

– nine combinable possibilities for mode
(read/write/execute for user, group, and others)
» S_IRUSR (0400), S_IWUSR (0200), S_IXUSR (0100)
» S_IRGRP (040), S_IWGRP (020), S_IXGRP (010)
» S_IROTH (04), S_IWOTH (02), S_IXOTH (01)

For each category (user, group, other), three bits represent their permissions. Thus
these are usually viewed as octal digits.

CS33 Intro to Computer Systems XX–15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Permission Bits

• It’s worth your while to remember this!
– read: 4
– write: 2
– execute: 1
– read/write: 6
– read/write/execute: 7

– user:group:others
» 0751

• rwx for user, rx for group, x for others
» 0640

• rw for user, r for group, nothing for others

The umask (often called the “creation mask”) allows programs to have wired into them a
standard set of maximum needed permissions as their file-creation modes. Users then
have, as part of their environment (via a per-process parameter that is inherited by child
processes from their parents), a limit on the permissions given to each of the classes of
security principals. This limit (the umask) looks like the 9-bit permissions vector
associated with each file, but each one-bit indicates that the corresponding permission
is not to be granted. Thus, if umask is set to 022, then, whenever a file is created,
regardless of the settings of the mode bits in the open or creat call, write permission for
group and others is not to be included with the file’s access permissions.
You can determine the current setting of umask by executing the umask shell command
without any arguments.

(Recall that numbers written with a leading 0 are in octal (base-8) notation.)

CS33 Intro to Computer Systems XX–16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Umask

• Standard programs create files with
“maximum needed permissions” as mode
– compilers: 0777
– editors: 0666

• Per-process parameter, umask, used to turn
off undesired permission bits
– e.g., turn off all permissions for others, write

permission for group: set umask to 027
» compilers: permissions = 0777 & ~(027) = 0750
» editors: permissions = 0666 & ~(027) = 0640

– set with umask system call or (usually) shell
command

CS33 Intro to Computer Systems XX–17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1

You get the following message when you
attempt to execute ./program (a file that you
own):
bash: ./program: Permission denied
You’re first response should be:
a) find the source code for program and

recompile it
b) execute the shell command

chmod 0644 program
c) execute the shell command

chmod 0755 program
d) make an Ed post

Originally in Unix one created a file only by using the creat system call. A separate
O_CREAT flag was later given to open so that it, too, can be used to create files. The
creat system call fails if the file already exists. For open, what happens if the file already
exists depends upon the use of the flags O_EXCL and O_TRUNC. If O_EXCL is included
with the flags (e.g., open(“newfile”, O_CREAT|O_EXCL, 0777)), then, as with creat,
the call fails if the file exists. Otherwise, the call succeeds and the (existing) file is
opened. If O_TRUNC is included in the flags, then, if the file exists, its previous contents
are eliminated and the file (whose size is now zero) is opened.

When a file is created by either open or creat, the file’s initial access permissions are
the bitwise AND of the mode parameter and the complement of the process’s umask
(explained in the previous slide).

CS33 Intro to Computer Systems XX–18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Creating a File

• Use either open or creat
– open(const char *pathname, int flags, mode_t mode)

» flags must include O_CREAT
– creat(const char *pathname, mode_t mode)

» open is preferred

• The mode parameter helps specify the permissions of
the newly created file
– permissions = mode & ~umask

A file’s link count is the number of directory entries that refer to it. There’s a separate
reference count that’s the number of file context structures that refer to it (via the inode
pointer – see slide XVII-9). These counts are maintained in the file’s inode, which
contains all information used by the operating system to refer to the file (on disk).

CS33 Intro to Computer Systems XX–19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count is
 // incremented by 1

1 RDONLY 0 inode
pointer

Note that the shell’s rm command is implemented using unlink; it simply removes the
directory entry, reducing the file’s link count by 1.

CS33 Intro to Computer Systems XX–20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count
 // incremented by 1

unlink("n1");
 // link count decremented by 1
 // same effect in shell via “rm n1”

1 RDONLY 0 inode
pointer

1

CS33 Intro to Computer Systems XX–21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count
 // incremented by 1

unlink("n1");
 // link count decremented by 1

close(fd);
 // reference count decremented by 1

1 RDONLY 0 inode
pointer

1
0

A file is deleted if and only if both its link and reference counts are zero.

CS33 Intro to Computer Systems XX–22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count
 // incremented by 1

unlink("n1");
 // link count decremented by 1

close(fd);
 // reference count decremented by 1

1
0

A file is deleted if and only if both its link and reference counts are zero.

CS33 Intro to Computer Systems XX–23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 1
reference count == 0

unlink("dir1/n2");
 // link count decremented by 1

0

Note that when a process terminates, all its open files are automatically closed.

CS33 Intro to Computer Systems XX–24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2
int main() {
 int fd = open("file", O_RDWR|O_CREAT, 0666);
 unlink("file");
 PutStuffInFile(fd);
 GetStuffFromFile(fd);
 return 0;
}

Assume that PutStuffInFile writes to the given file, and
GetStuffFromFile reads from the file.
a) This program is doomed to failure, since the file is

deleted before it’s used
b) Because the file is used after the unlink call, it won’t be

deleted
c) The file will be deleted when the program terminates

A rather elegant way for different processes to communicate is via a pipe: one process
puts data into a pipe, another process reads the data from the pipe.

CS33 Intro to Computer Systems XX–25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Interprocess Communication
(IPC): Pipes

The implementation of a pipe involves the sending process using a write system call to
transfer data into a kernel buffer. The receiving process fetches the data from the buffer
via a read system call. We’ll cover some of the details about how this works when we
discuss multithreaded programming later in the semester.

CS33 Intro to Computer Systems XX–26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Interprocess Communication:
Same Machine I

Kernel buffer

Another way for processes to communicate is for them to arrange to have some memory
in common via which they share information. We discuss this approach later in the
semester.

CS33 Intro to Computer Systems XX–27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Interprocess Communication:
Same Machine II

Shared Memory

process
1

process
2

The pipe abstraction can also be made to work between processes on different
machines. We discuss this later in the semester.

CS33 Intro to Computer Systems XX–28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Interprocess Communication:
Different Machines

Internet

The vertical bar (“|”) is the pipe symbol in the shell. The syntax shown above represents
creating two processes, one running who and the other running wc. The standard
output of who is setup to be the pipe; the standard input of wc is setup to be the pipe.
Thus, the output of who becomes the input of wc. The ”-l” argument to wc tells it to
count and print out the number of lines that are input to it. The who command writes to
standard output the login names of all logged in users. The combination of the two
produces the number of users who are currently logged in.

CS33 Intro to Computer Systems XX–29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Pipes

$cslab2e who | wc -l

pipewho wc -l

The pipe system call creates a “pipe” in the kernel and sets up two file descriptors. One,
in fd[1], is for writing to the pipe; the other, in fd[0], is for reading from the pipe. The
input end of the pipe is set up to be stdout for the process running who, and the output
end of the pipe is closed, since it’s not needed. Similarly, the input end of the pipe is set
up to be stdin for the process running wc, and the input end is closed. Since the parent
process (running the shell) has no further need for the pipe, it closes both ends. When
neither end of the pipe is open by any process, the system deletes it. If a process reads
from a pipe for which no process has the input end open, the read returns 0, indicating
end of file. If a process writes to a pipe for which no process has the output end open,
the write returns -1, indicating an error and errno is set to EPIPE; the process also
receives the SIGPIPE signal, which we explain in the next lecture.

CS33 Intro to Computer Systems XX–30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Using Pipes in C

$cslab2e who | wc -l

int fd[2];
pipe(fd);
if (fork() == 0) {
 close(fd[0]);
 close(1);
 dup(fd[1]); close(fd[1]);
 execl("/usr/bin/who", "who", 0); // who sends output to pipe
}
if (fork() == 0) {
 close(fd[1]);
 close(0);
 dup(fd[0]); close(fd[0]);
 execl("/usr/bin/wc", "wc", "-l", 0); // wc’s input is from pipe
}
close(fd[1]); close(fd[0]);
// …

pipefd[1] fd[0]

Recall that when an ampersand (&) is placed at the end of a command, the shell doesn’t
wait for it to complete, but immediately goes on to the next command.

CS33 Intro to Computer Systems XX–31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 3

We would like the output of prog1 be the input
of prog2. Rather than use a pipe, we do the
following:
$ prog1 >file &
$ prog2 <file

Would this work?

a) never
b) sometimes
c) always

This is, of course, over simplified. The complete program should be 200 or so lines long.

Note that "handle x" might simply involve taking note of x, then dealing with it later.

Also note that “artisanal” anything is always better than “non-artisanal” anything.

CS33 Intro to Computer Systems XX–32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shell 1: Artisanal Coding
while ((line = get_a_line()) != 0) {
 tokens = parse_line(line);
 for (int i=0; i < ntokens; i++) {
 if (strcmp(tokens[i], ">") == 0) {
 // handle output redirection
 } else if (strcmp(tokens[i], "<") == 0) {
 // handle input redirection
 } else if (strcmp(tokens[i], "&") == 0) {
 // handle "no wait"
 } ... else {
 // handle other cases
 }

 }
 if (fork() == 0) {
 // ...
 execv(...);
 }
 // ...

}

One first writes the code assuming no redirection symbols and no &s. That's perfectly
reasonable.

CS33 Intro to Computer Systems XX–33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (1)
while ((line = get_a_line()) != 0) {
 tokens = parse_line(line);
 for (int i=0; i < ntokens; i++) {
 // handle "normal" case
 }
 if (fork() == 0) {
 // ...
 execv(...);
 }
 // ...
}

The next step is to deal with redirection symbols. Rather than modify the fork/exec code
so as to work for both cases, it's copied into the new case and modified there. Thus, we
now have two versions of the fork/exec code to maintain. If we find a bug in one, we
need to remember to fix it in both.

At this point it's becoming difficult for you to debug your code, and really difficult for
TAs to figure out what you're doing so they can help you.

CS33 Intro to Computer Systems XX–34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (2)
next_line: while ((line = get_a_line()) != 0) {
 tokens = parse_line(line);
 for (int i=0; i < ntokens; i++) {
 if (redirection_symbol(token[i])) {
 // ...
 if (fork() == 0) {

 // ...
 execv(...);
 }
 // ...
 goto next_line;
 }

 // handle "normal" case
 }
 if (fork() == 0) {
 // ...
 execv(...);
 }

 // ...
}

whoops!

(whoops!)

We now have to handle & in multiple places.

If done this way, you could well have a 700-line program (the artisanal code took around
200 lines).

CS33 Intro to Computer Systems XX–35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (3)
next_line: while ((line = get_a_line()) != 0) {
 tokens = parse_line(line);
 for (int i=0; i < ntokens; i++) {
 if (redirection_symbol(token[i])) {
 // ...
 if (fork() == 0) {

 // ...
 execv(...);
 }
 // ... deal with &
 goto next_line;
 }

 // handle "normal" case
 }
 if (fork() == 0) {
 // ...
 execv(...);
 }

 // ... also deal with & here!
}

If the code is poorly formatted, it's even tougher to understand.

CS33 Intro to Computer Systems XX–36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (Worse)
next_line: while ((line = get_a_line()) != 0) {
tokens = parse_line(line);
for (int i=0; i < ntokens; i++) {
if (redirection_symbol(token[i])) {
// ...
if (fork() == 0) {

// ...
execv(...);
}
// ... deal with &
goto next_line;
}

// handle "normal" case
}
if (fork() == 0) {
// ...
execv(...);
}

// ... also deal with & here!
}

CS33 Intro to Computer Systems XX–37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Artisanal Programming

• Factor your code!
– A; FE | B; FE | C; FE = (A | B | C); FE

• Format as you write!
– donʼt run the formatter only just before handing it in
– your code should always be well formatted

• If you have a tough time understanding your
code, youʼll have a tougher time debugging it
and TAs will have an even tougher time
helping you

CS33 Intro to Computer Systems XX–38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Itʼs Your Code

• Be proud of it!
– it not only works; it shows skillful artisanship

• Itʼs not enough to merely work
– others have to understand it

» (not to mention you ...)
– you (and others) have to maintain it

» shell 2 is coming soon!

