
CS33 Intro to Computer Systems XXI–1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Files Part 4

A file’s link count is the number of directory entries that refer to it. There’s a separate
reference count that’s the number of file context structures that refer to it (via the inode
pointer – see slide XVII-9). These counts are maintained in the file’s inode, which
contains all information used by the operating system to refer to the file (on disk).

CS33 Intro to Computer Systems XXI–2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count is
 // incremented by 1

1 RDONLY 0 inode
pointer

Note that the shell’s rm command is implemented using unlink; it simply removes the
directory entry, reducing the file’s link count by 1.

CS33 Intro to Computer Systems XXI–3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count
 // incremented by 1

unlink("n1");
 // link count decremented by 1
 // same effect in shell via “rm n1”

1 RDONLY 0 inode
pointer

1

CS33 Intro to Computer Systems XXI–4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count
 // incremented by 1

unlink("n1");
 // link count decremented by 1

close(fd);
 // reference count decremented by 1

1 RDONLY 0 inode
pointer

1
0

A file is deleted if and only if both its link and reference counts are zero.

CS33 Intro to Computer Systems XXI–5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count
 // incremented by 1

unlink("n1");
 // link count decremented by 1

close(fd);
 // reference count decremented by 1

1
0

A file is deleted if and only if both its link and reference counts are zero.

CS33 Intro to Computer Systems XXI–6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 1
reference count == 0

unlink("dir1/n2");
 // link count decremented by 1

0

Note that when a process terminates, all its open files are automatically closed.

CS33 Intro to Computer Systems XXI–7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1
int main() {
 int fd = open("file", O_RDWR|O_CREAT, 0666);
 unlink("file");
 PutStuffInFile(fd);
 GetStuffFromFile(fd);
 return 0;
}

Assume that PutStuffInFile writes to the given file, and
GetStuffFromFile reads from the file.
a) This program is doomed to failure, since the file is

deleted before it’s used
b) Because the file is used after the unlink call, it won’t be

deleted
c) The file will be deleted when the program terminates

A rather elegant way for different processes to communicate is via a pipe: one process
puts data into a pipe, another process reads the data from the pipe.

CS33 Intro to Computer Systems XXI–8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Interprocess Communication
(IPC): Pipes

The implementation of a pipe involves the sending process using a write system call to
transfer data into a kernel buffer. The receiving process fetches the data from the buffer
via a read system call. We’ll cover some of the details about how this works when we
discuss multithreaded programming later in the semester.

CS33 Intro to Computer Systems XXI–9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Interprocess Communication:
Same Machine I

Kernel buffer

Another way for processes to communicate is for them to arrange to have some memory
in common via which they share information. We discuss this approach later in the
semester.

CS33 Intro to Computer Systems XXI–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Interprocess Communication:
Same Machine II

Shared Memory

process
1

process
2

The pipe abstraction can also be made to work between processes on different
machines. We discuss this later in the semester.

CS33 Intro to Computer Systems XXI–11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Interprocess Communication:
Different Machines

Internet

The vertical bar (“|”) is the pipe symbol in the shell. The syntax shown above represents
creating two processes, one running who and the other running wc. The standard
output of who is setup to be the pipe; the standard input of wc is setup to be the pipe.
Thus, the output of who becomes the input of wc. The ”-l” argument to wc tells it to
count and print out the number of lines that are input to it. The who command writes to
standard output the login names of all logged in users. The combination of the two
produces the number of users who are currently logged in.

CS33 Intro to Computer Systems XXI–12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Pipes

$cslab2e who | wc -l

pipewho wc -l

The pipe system call creates a “pipe” in the kernel and sets up two file descriptors. One,
in fd[1], is for writing to the pipe; the other, in fd[0], is for reading from the pipe. The
input end of the pipe is set up to be stdout for the process running who, and the output
end of the pipe is closed, since it’s not needed. Similarly, the input end of the pipe is set
up to be stdin for the process running wc, and the input end is closed. Since the parent
process (running the shell) has no further need for the pipe, it closes both ends. When
neither end of the pipe is open by any process, the system deletes it. If a process reads
from a pipe for which no process has the input end open, the read returns 0, indicating
end of file. If a process writes to a pipe for which no process has the output end open,
the write returns -1, indicating an error and errno is set to EPIPE; the process also
receives the SIGPIPE signal, which we explain in the next lecture.

CS33 Intro to Computer Systems XXI–13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Using Pipes in C

$cslab2e who | wc -l

int fd[2];
pipe(fd);
if (fork() == 0) {
 close(fd[0]);
 close(1);
 dup(fd[1]); close(fd[1]);
 execl("/usr/bin/who", "who", 0); // who sends output to pipe
}
if (fork() == 0) {
 close(fd[1]);
 close(0);
 dup(fd[0]); close(fd[0]);
 execl("/usr/bin/wc", "wc", "-l", 0); // wc’s input is from pipe
}
close(fd[1]); close(fd[0]);
// …

pipefd[1] fd[0]

This is, of course, over simplified. The complete program should be 200 or so lines long.

Note that "handle x" might simply involve taking note of x, then dealing with it later.

Also note that “artisanal” anything is always better than “non-artisanal” anything.

CS33 Intro to Computer Systems XXI–14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shell 1: Artisanal Coding
while ((line = get_a_line()) != 0) {
 tokens = parse_line(line);
 for (int i=0; i < ntokens; i++) {
 if (strcmp(tokens[i], ">") == 0) {
 // handle output redirection
 } else if (strcmp(tokens[i], "<") == 0) {
 // handle input redirection
 } else if (strcmp(tokens[i], "&") == 0) {
 // handle "no wait"
 } ... else {
 // handle other cases
 }

 }
 if (fork() == 0) {
 // ...
 execv(...);
 }
 // ...

}

One first writes the code assuming no redirection symbols and no &s. That's perfectly
reasonable.

CS33 Intro to Computer Systems XXI–15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (1)
while ((line = get_a_line()) != 0) {
 tokens = parse_line(line);
 for (int i=0; i < ntokens; i++) {
 // handle "normal" case
 }
 if (fork() == 0) {
 // ...
 execv(...);
 }
 // ...
}

The next step is to deal with redirection symbols. Rather than modify the fork/exec code
so as to work for both cases, it's copied into the new case and modified there. Thus, we
now have two versions of the fork/exec code to maintain. If we find a bug in one, we
need to remember to fix it in both.

At this point it's becoming difficult for you to debug your code, and really difficult for
TAs to figure out what you're doing so they can help you.

CS33 Intro to Computer Systems XXI–16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (2)
next_line: while ((line = get_a_line()) != 0) {
 tokens = parse_line(line);
 for (int i=0; i < ntokens; i++) {
 if (redirection_symbol(token[i])) {
 // ...
 if (fork() == 0) {

 // ...
 execv(...);
 }
 // ...
 goto next_line;
 }

 // handle "normal" case
 }
 if (fork() == 0) {
 // ...
 execv(...);
 }

 // ...
}

whoops!

(whoops!)

We now have to handle & in multiple places.

If done this way, you could well have a 700-line program (the artisanal code took around
200 lines).

CS33 Intro to Computer Systems XXI–17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (3)
next_line: while ((line = get_a_line()) != 0) {
 tokens = parse_line(line);
 for (int i=0; i < ntokens; i++) {
 if (redirection_symbol(token[i])) {
 // ...
 if (fork() == 0) {

 // ...
 execv(...);
 }
 // ... deal with &
 goto next_line;
 }

 // handle "normal" case
 }
 if (fork() == 0) {
 // ...
 execv(...);
 }

 // ... also deal with & here!
}

If the code is poorly formatted, it's even tougher to understand.

CS33 Intro to Computer Systems XXI–18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (Worse)
next_line: while ((line = get_a_line()) != 0) {
tokens = parse_line(line);
for (int i=0; i < ntokens; i++) {
if (redirection_symbol(token[i])) {
// ...
if (fork() == 0) {

// ...
execv(...);
}
// ... deal with &
goto next_line;
}

// handle "normal" case
}
if (fork() == 0) {
// ...
execv(...);
}

// ... also deal with & here!
}

CS33 Intro to Computer Systems XXI–19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Artisanal Programming

• Factor your code!
– A; D | B; D | C; D = (A | B | C); D

• Format as you write!
– donʼt run the formatter only just before handing it in
– your code should always be well formatted

• If you have a tough time understanding your
code, youʼll have a tougher time debugging it
and TAs will have an even tougher time
helping you

CS33 Intro to Computer Systems XXI–20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Itʼs Your Code

• Be proud of it!
– it not only works; it shows skillful artisanship

• Itʼs not enough to merely work
– others have to understand it

» (not to mention you ...)
– you (and others) have to maintain it

» shell 2 is coming soon!

CS33 Intro to Computer Systems XXI–21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Signals Part 1

CS33 Intro to Computer Systems XXI–22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

An Interlude Between Shells

• Shell 1
– it can run programs
– it can redirect I/O

• Signals
– a mechanism for coping with exceptions and

external events
– the mechanism needed for shell 2

• Shell 2
– it can control running programs

CS33 Intro to Computer Systems XXI–23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Whoops …

$ SometimesUsefulProgram xyz
Are you sure you want to proceed?

Are you really sure?
Reformatting of your disk will begin
in 3 seconds.

Everything you own will be deleted.
There's little you can do about it.
Too bad …

Y
Y

Oh dear…

CS33 Intro to Computer Systems XXI–24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

A Gentler Approach

• Signals
–get a process’s attention

» send it a signal
–process must either deal with it or be

terminated
» in some cases, the latter is the only option

CS33 Intro to Computer Systems XXI–25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Stepping Back …

• What are we trying to do?
– interrupt the execution of a program

» cleanly terminate it
or

» cleanly change its course

– not for the faint of heart
» it’s difficult
» it gets complicated
» (not done in Windows)

Signals are a kernel-supported mechanism for reporting events to user code and forcing
a response to them. There are actually two sorts of such events, to which we sometimes
refer as exceptions and interrupts. The former occur typically because the program has
done something wrong. The response, the sending of a signal, is immediate; such signals
are known as synchronous signals. The latter are in response to external actions, such
as a timer expiring, an action at the keyboard, or the explicit sending of a signal by
another process. Signals send in response to these events can seemingly occur at any
moment and are referred to as asynchronous signals.

Processes react to signals using the actions shown in the slide. The action taken
depends partly on the signal and partly on arrangements made in the process
beforehand.

A core dump is the contents of a process's address space, written to a file (called core),
reflecting what the situation was when it was terminated by a signal. They can be used
by gdb to see what happened (e.g., to get a backtrace). Since they're fairly large and
rarely looked at, they're normally disabled. We'll look at them further shortly.

CS33 Intro to Computer Systems XXI–26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signals

• Generated (by OS) in response to
– exceptions (e.g., arithmetic errors, addressing

problems)
» synchronous signals

– external events (e.g., timer expiration, certain
keystrokes, actions of other processes)
» asynchronous signals

• Effect on process:
– termination (possibly producing a core dump)
– invocation of a function that has been set up to be a

signal handler
– suspension of execution
– resumption of execution

This slide shows the complete list of signals required by POSIX 1003.1, the official Unix
specification. In addition, many Unix systems support other signals, some of which we’ll
mention in the course. The third column of the slide lists the default actions in response
to each of the signals. term means the process is terminated, core means there is also a
core dump; ignore means that the signal is ignored; stop means that the process is
stopped (suspended); cont means that a stopped process is resumed (continued); forced
means that the default action cannot be changed and that the signal cannot be blocked
or ignored.

CS33 Intro to Computer Systems XXI–27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signal Types

SIGABRT abort called term, core
SIGALRM alarm clock term
SIGCHLD death of a child ignore
SIGCONT continue after stop cont
SIGFPE erroneous arithmetic operation term, core
SIGHUP hangup on controlling terminal term
SIGILL illegal instruction term, core
SIGINT interrupt from keyboard term
SIGKILL kill forced term
SIGPIPE write on pipe with no one to read term
SIGQUIT quit term, core
SIGSEGV invalid memory reference term, core
SIGSTOP stop process forced stop
SIGTERM software termination signal term
SIGTSTP stop signal from keyboard stop
SIGTTIN background read attempted stop
SIGTTOU background write attempted stop
SIGUSR1 application-defined signal 1 stop
SIGUSR2 application-defined signal 2 stop

Note that the signals generated by typing control characters on the keyboard
are actually sent to the current process group of the terminal, a concept we
discuss soon.

CS33 Intro to Computer Systems XXI–28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Sending a Signal

• int kill(pid_t pid, int sig)
– send signal sig to process pid

• Also
– kill shell command
– type ctrl-c

» sends signal 2 (SIGINT) to current process
– type ctrl-\

» sends signal 3 (SIGQUIT) to current process
– type ctrl-z

» sends signal 20 (SIGTSTP) to current process
– do something bad

» bad address, bad arithmetic, etc.

The signal function establishes a new handler for the given signal and returns
the address of the previous handler.

CS33 Intro to Computer Systems XXI–29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Handling Signals

#include <signal.h>

typedef void (*sighandler_t)(int);
sighandler_t signal(int signo,
 sighandler_t handler);

sighandler_t OldHandler;

OldHandler = signal(SIGINT, NewHandler);

CS33 Intro to Computer Systems XXI–30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Special Handlers

• SIG_IGN
– ignore the signal
–signal(SIGINT, SIG_IGN);

• SIG_DFL
–use the default handler

» usually terminates the process
–signal(SIGINT, SIG_DFL);

Note that the C compiler implicitly concatenates two adjacent strings, as done
in printf above.

CS33 Intro to Computer Systems XXI–31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Example

void sigloop() {
 while(1)
 ;
}

int main() {
 void handler(int);
 signal(SIGINT, handler);
 sigloop();
 return 1;
}
void handler(int signo) {
 printf("I received signal %d. "
 "Whoopee!!\n", signo);
}

Don’t forget to delete the core files when you're finished with them! Note that neither
OSX nor Windows supports core dumps.

Some details on the ulimit command: its supports both a hard limit (which can't be
modified) and a soft limit (which can later be modified). By default, ulimit sets both the
hard and soft limits. Thus typing

ulimit –c 0

sets both the hard and soft limits of core file size to 0, meaning that you can't increase
the limit later (within the execution of the current invocation of this shell).

But if you type

ulimit –Sc 0

then just the soft limit is modified, allowing you to type

ulimit –c unlimited

later.

CS33 Intro to Computer Systems XXI–32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Digression: Core Dumps

• Core dumps
– files (called “core”) that hold the contents of a

processʼs address space after termination by a
signal

– theyʼre large and rarely used, so theyʼre often
disabled by default

– use the ulimit command in bash to enable them

ulimit –c unlimited

– use gdb to examine the process (post-mortem
debugging)

gdb sig core

The sigaction system call is the the more general means for establishing a process’s
response to a particular signal. Its first argument is the signal for which a response is
being specified, the second argument is a pointer to a sigaction structure defining the
response, and the third argument is a pointer to memory in which a sigaction structure
will be stored containing the specification of what the response was prior to this call. If
the third argument is null, the prior response is not returned.

The sa_handler member of sigaction is either a pointer to a user-defined handler
function for the signal or one of SIG_DFL (meaning that the default action is taken) or
SIG_IGN (meaning that the signal is to be ignored). The sig_action member is an
alternative means for specifying a handler function; we won't get a chance to discuss it,
but it's used when more information about the cause of a signal is needed.

When a user-defined signal-handler function is entered in response to a signal, the
signal itself is masked until the function returns. Using the sa_mask member, one can
specify additional signals to be masked while the handler function is running. On return
from the handler function, the process’s previous signal mask is restored.

The sa_flags member is used to specify various other things that we describe in
upcoming slides.

CS33 Intro to Computer Systems XXI–33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

sigaction

int sigaction(int sig, const struct sigaction *new,
 struct sigaction *old);
struct sigaction {

void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;

};

int main() {
struct sigaction act; void myhandler(int);
sigemptyset(&act.sa_mask); // zeroes the mask
act.sa_flags = 0;
act.sa_handler = myhandler;
sigaction(SIGINT, &act, NULL);
…

}

This has behavior identical to the previous example; we’re using sigaction
rather than signal to set up the signal handler.

CS33 Intro to Computer Systems XXI–34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Example

int main() {
 void handler(int);
 struct sigaction act;
 act.sa_handler = handler;
 sigemptyset(&act.sa_mask);
 act.sa_flags = 0;
 sigaction(SIGINT, &act, 0);

 while(1)
 ;
 return 1;
}

void handler(int signo) {
 printf("I received signal %d. "
 "Whoopee!!\n", signo);
}

CS33 Intro to Computer Systems XXI–35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1

int main() {
 void handler(int);
 struct sigaction act;
 act.sa_handler = handler;
 sigemptyset(&act.sa_mask);
 act.sa_flags = 0;
 sigaction(SIGINT, &act, 0);

 while(1)
 ;
 return 1;
}

void handler(int signo) {
 printf("I received signal %d. "
 "Whoopee!!\n", signo);
}

You run the example program, then
quickly type ctrl-C. What is the most
likely explanation if the program then
terminates?

a) this “can’t happen”; thus
there’s a problem with the
system

b) you’re really quick or the
system is really slow (or both)

c) what we’ve told you so far
isn’t quite correct

Here we use the setitimer system call to arrange so that a SIGALRM signal is generated
in one millisecond. (The system call takes three arguments: the first indicates how time
should be measured; what’s specified here is to use real time. See its man page for other
possibilities. The second argument contains a struct itimerval that itself contains two
struct timevals. One (named it_value) indicates how much time should elapse before a
SIGALRM is generated for the process. The other (named it_interval), if non-zero,
indicates that a SIGALRM should be sent again, repeatedly, every it_interval period of
time. Each process may have only one pending timer, thus when a process calls
setitimer, the new value replaces the old. If the third argument to setitimer is non-
zero, the old value is stored at the location it points to.)

The pause system call causes the process to block (go to sleep) and not resume until
some signal that is not ignored is delivered.

CS33 Intro to Computer Systems XXI–36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Waiting for a Signal …

signal(SIGALRM, RespondToSignal);

…

struct timeval waitperiod = {0, 1000};
/* seconds, microseconds */

struct timeval interval = {0, 0};
struct itimerval timerval;
timerval.it_value = waitperiod;
timerval.it_interval = interval;

setitimer(ITIMER_REAL, &timerval, 0);
/* SIGALRM sent in ~one millisecond */

pause(); /* wait for it */
printf("success!\n");

CS33 Intro to Computer Systems XXI–37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2

signal(SIGALRM, RespondToSignal);

…

struct timeval waitperiod = {0, 1000};
/* seconds, microseconds */

struct timeval interval = {0, 0};
struct itimerval timerval;
timerval.it_value = waitperiod;
timerval.it_interval = interval;

setitimer(ITIMER_REAL, &timerval, 0);
/* SIGALRM sent in ~one millisecond */

pause(); /* wait for it */
printf("success!\n");

This program is guaranteed to print
“success!”.

a) no
b) yes

CS33 Intro to Computer Systems XXI–38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Masking Signals

setitimer(ITIMER_REAL, &timerval, 0);
/* SIGALRM sent in ~one millisecond */

pause(); /* wait for it */

No signals here, please!

If a signal is masked, then, if it occurs, it's not immediately applied to the process, but
will be applied when it's no longer masked.

CS33 Intro to Computer Systems XXI–39 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Masking Signals

mask SIGALRM
setitimer(ITIMER_REAL, &timerval, 0);

/* SIGALRM sent in ~one millisecond */

unmask and wait for SIGALRM

No signals here

Here’s a safer way of doing what was attempted in the earlier slide. We mask the
SIGALRM signal before calling setitimer. Then, rather than calling pause, we call
sigsuspend, which sets the set of masked signals to its argument and, at the same
instant, blocks the calling process. Thus if the SIGALRM is generated before our process
calls sigsuspend, it won’t be delivered right away. Since the call to sigsuspend
reinstates the previous mask (which, presumably, did not include SIGALRM), the
SIGALRM signal will be delivered and the process will return (after invoking the
handler). When sigsuspend returns, the signal mask that was in place just before it was
called is restored. Thus we have to restore oldset explicitly.

As with pause, sigsuspend returns only if an unmasked signal that is not ignored is
delivered.

CS33 Intro to Computer Systems XXI–40 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Doing It Safely
sigset_t set, oldset;
sigemptyset(&set);
sigaddset(&set, SIGALRM);
sigprocmask(SIG_BLOCK, &set, &oldset);

/* SIGALRM now masked */
…
setitimer(ITIMER_REAL, &timerval, 0);

/* SIGALRM sent in ~one millisecond */

sigsuspend(&oldset); /* unmask sig and wait */
/* SIGALRM masked again */

sigprocmask(SIG_SETMASK, &oldset, (sigset_t *)0);
/* SIGALRM unmasked */

printf("success!\n");

A number of signal-related operations involve sets of signals. These sets are normally
represented by a bit vector of type sigset_t.

CS33 Intro to Computer Systems XXI–41 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signal Sets

• To clear a set:
int sigemptyset(sigset_t *set);

• To add or remove a signal from the set:
int sigaddset(sigset_t *set, int signo);
int sigdelset(sigset_t *set, int signo);

• Example: to refer to both SIGHUP and SIGINT:
sigset_t set;

sigemptyset(&set);
sigaddset(&set, SIGHUP);
sigaddset(&set, SIGINT);

In addition to ignoring signals, you may specify that they are to be blocked (that is, held
pending or masked). When a signal type is masked, signals of that type remains pending
and do not interrupt the process until they are unmasked. When the process unblocks
the signal, the action associated with any pending signal is performed. This technique is
most useful for protecting critical code that should not be interrupted. Also, as we’ve
already seen, when the handler for a signal is entered, subsequent occurrences of that
signal are automatically masked until the handler is exited, hence the handler never has
to worry about being invoked to handle another instance of the signal it’s already
handling.

CS33 Intro to Computer Systems XXI–42 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Masking (Blocking) Signals

#include <signal.h>
int sigprocmask(int how, const sigset_t *set,
 sigset_t *old);

– used to examine or change the signal mask of the calling
process
» how is one of three commands:

• SIG_BLOCK
– the new signal mask is the union of the current

signal mask and set
• SIG_UNBLOCK

– the new signal mask is the intersection of the
current signal mask and the complement of set

• SIG_SETMASK
– the new signal mask is set

CS33 Intro to Computer Systems XXI–43 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signal Handlers and Masking

• What if a signal occurs while a previous instance
is being handled?
– inconvenient …

• Signals are masked while being handled
– may mask other signals as well:

struct sigaction act; void myhandler(int);
sigemptyset(&act.sa_mask); // zeroes the mask
sigaddset(&act.sa_mask, SIGQUIT);
 // also mask SIGQUIT
act.sa_flags = 0;
act.sa_handler = myhandler;
sigaction(SIGINT, &act, NULL);

This slide sketches something that one might want to try to do: give a user a limited
amount of time (in this case, 30 seconds — the alarm function causes the system to
send the process a SIGALRM signal in the given number of seconds) to provide some
input, then, if no input, notify the caller that there is a problem. Here we’d like our
timeout handler to transfer control to someplace else in the program, but we can’t do
this. (Note also that we should cancel the call to alarm if there is input. So that we can
fit all the code in a single slide, we’ve left this part out.)

CS33 Intro to Computer Systems XXI–44 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Timed Out!

int TimedInput() {
signal(SIGALRM, timeout);
…
alarm(30); /* send SIGALRM in 30 seconds */
GetInput(); /* possible long wait for input */
alarm(0); /* cancel SIGALRM request */
HandleInput();
return(0);

nogood:
return(1);

}

void timeout() {
goto nogood; /* not legal but straightforward */

}

To get around the problem of not being able to use a goto statement to get out of a
signal handler, we introduce the setjmp/longjmp facility, also known as the nonlocal
goto. A call to sigsetjmp stores context information (about the current locus of
execution) that can be restored via a call to siglongjmp. A bit more precisely: sigsetjmp
stores into its first argument the values of the program-counter (instruction-pointer),
stack-pointer, and other registers representing the process’s current execution context.
If the second argument is non-zero, the current signal mask is saved as well. The call
returns 0. When siglongjmp is called with a pointer to this context information as its
first argument, the current register values are replaced with those that were saved. If the
signal mask was saved, that is restored as well. The effect of doing this is that the
process resumes execution where it was when the context information was saved: inside
of sigsetjmp. However, this time, rather than returning zero, it returns the second
argument passed to siglongjmp (1 in the example).

To use this facility, you must include the header file setjmp.h.

CS33 Intro to Computer Systems XXI–45 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Doing It Legally (but Weirdly)
sigjmp_buf context;

int TimedInput() {
signal(SIGALRM, timeout);
if (sigsetjmp(context, 1) == 0) {

alarm(30); // cause SIGALRM in 30 seconds
GetInput(); // possible long wait for input
alarm(0); // cancel SIGALRM request
HandleInput();
return 0;

} else
return 1;

}

void timeout() {
siglongjmp(context, 1); /* legal but weird */

}

The effect of sigsetjmp is to save the registers relevant to the current stack frame; in
particular, the instruction pointer, the base pointer (if used), and the stack pointer, as
well as the return address and the current signal mask. A subsequent call to siglongjmp
restores the stack to what it was at the time of the call to sigsetjmp. Note that
siglongjmp should be called only from a stack frame that is farther on the stack than
the one in which sigsetjmp was called.

CS33 Intro to Computer Systems XXI–46 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

sigsetjmp/siglongjmp

sigsetjmp

siglongjmp

Stack

TimedInput

CS33 Intro to Computer Systems XXI–47 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Exceptions

• Other languages support exception handling

try {
 something_a_bit_risky();
} catch(ArithmeticException e) {
 deal_with_it(e);
}

• Can we do something like this in C?

The slide suggests a C syntax for exception handling. The TRY/CATCH/END behave as
the try/catch does in the previous slide. The signal handler (called “Exception” in the
slide) responds to exceptions, then THROWs the exception, to be caught in the
TRY/CATCH/END construct. The big question, of course, is can we implement this?

CS33 Intro to Computer Systems XXI–48 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Exception Handling in C

void Exception(int sig) {
 THROW(sig)
}

int computation(int a) {
 return a/(a-a);
}

int main() {
 signal(SIGFPE, Exception);
 signal(SIGSEGV, Exception);
 TRY {
 computation(1);
 } CATCH(SIGFPE) {
 fprintf(stderr,
 "SIGFPE\n");
 } CATCH(SIGSEGV) {
 fprintf(stderr,
 "SIGSEGV\n");
 } END

 return 0;
}

Here’s an implementation of TRY, CATCH, END, and THROW using macros. Note that
since #define statements are restricted to one line, we “escape” the ends of lines with
back slashes.

CS33 Intro to Computer Systems XXI–49 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Exception Handling in C

#define TRY \
 { \
 int excp; \
 if ((excp = \
 sigsetjmp(ctx, 1)) == 0)

#define CATCH(a_excp) \
 else if (excp == a_excp)

#define END }

#define THROW(excp) \
 siglongjmp(ctx, excp);

And here is the code with the macros expanded.

CS33 Intro to Computer Systems XXI–50 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Exception Handling in C
sigjmp_buf ctx;

int main() {
 ...
 {
 int excp;
 if ((excp = sigsetjmp(ctx, 1)) == 0) {
 computation(1);
 } else if (excp == SIGFPE) {
 fprintf(stderr, "SIGFPE\n");
 } else if (excp == SIGSEGV) {
 fprintf(stderr, "SIGFPE\n");
 }
 }
 return 0;
}

void exception(int sig) {
 siglongjmp(ctx, sig);
}

TRY

CATCH

CATCH

END

THROW

