
CS33 Intro to Computer Systems XXI–1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Files Part 4

CS33 Intro to Computer Systems XXI–2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count is
 // incremented by 1

1 RDONLY 0 inode
pointer

CS33 Intro to Computer Systems XXI–3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count
 // incremented by 1

unlink("n1");
 // link count decremented by 1
 // same effect in shell via “rm n1”

1 RDONLY 0 inode
pointer

1

CS33 Intro to Computer Systems XXI–4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count
 // incremented by 1

unlink("n1");
 // link count decremented by 1

close(fd);
 // reference count decremented by 1

1 RDONLY 0 inode
pointer

1
0

CS33 Intro to Computer Systems XXI–5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
 // n1’s reference count
 // incremented by 1

unlink("n1");
 // link count decremented by 1

close(fd);
 // reference count decremented by 1

1
0

CS33 Intro to Computer Systems XXI–6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 1
reference count == 0

unlink("dir1/n2");
 // link count decremented by 1

0

CS33 Intro to Computer Systems XXI–7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1
int main() {
 int fd = open("file", O_RDWR|O_CREAT, 0666);
 unlink("file");
 PutStuffInFile(fd);

 GetStuffFromFile(fd);

 return 0;
}

Assume that PutStuffInFile writes to the given file, and
GetStuffFromFile reads from the file.
a) This program is doomed to failure, since the file is

deleted before it’s used
b) Because the file is used after the unlink call, it won’t be

deleted
c) The file will be deleted when the program terminates

CS33 Intro to Computer Systems XXI–8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Interprocess Communication
(IPC): Pipes

CS33 Intro to Computer Systems XXI–9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Interprocess Communication:
Same Machine I

Kernel buffer

CS33 Intro to Computer Systems XXI–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Interprocess Communication:
Same Machine II

Shared Memory

process
1

process
2

CS33 Intro to Computer Systems XXI–11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Interprocess Communication:
Different Machines

Internet

CS33 Intro to Computer Systems XXI–12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Pipes

$cslab2e who | wc -l

pipewho wc -l

CS33 Intro to Computer Systems XXI–13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Using Pipes in C

$cslab2e who | wc -l

int fd[2];
pipe(fd);
if (fork() == 0) {
 close(fd[0]);
 close(1);
 dup(fd[1]); close(fd[1]);
 execl("/usr/bin/who", "who", 0); // who sends output to pipe
}
if (fork() == 0) {
 close(fd[1]);
 close(0);
 dup(fd[0]); close(fd[0]);
 execl("/usr/bin/wc", "wc", "-l", 0); // wc’s input is from pipe
}
close(fd[1]); close(fd[0]);
// …

pipefd[1] fd[0]

CS33 Intro to Computer Systems XXI–14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shell 1: Artisanal Coding
while ((line = get_a_line()) != 0) {
 tokens = parse_line(line);

 for (int i=0; i < ntokens; i++) {
 if (strcmp(tokens[i], ">") == 0) {
 // handle output redirection

 } else if (strcmp(tokens[i], "<") == 0) {
 // handle input redirection

 } else if (strcmp(tokens[i], "&") == 0) {
 // handle "no wait"
 } ... else {
 // handle other cases

 }
 }

 if (fork() == 0) {
 // ...
 execv(...);

 }
 // ...

}

CS33 Intro to Computer Systems XXI–15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (1)
while ((line = get_a_line()) != 0) {
 tokens = parse_line(line);

 for (int i=0; i < ntokens; i++) {
 // handle "normal" case

 }

 if (fork() == 0) {
 // ...

 execv(...);

 }
 // ...

}

CS33 Intro to Computer Systems XXI–16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (2)
next_line: while ((line = get_a_line()) != 0) {
 tokens = parse_line(line);

 for (int i=0; i < ntokens; i++) {
 if (redirection_symbol(token[i])) {
 // ...

 if (fork() == 0) {
 // ...

 execv(...);

 }
 // ...

 goto next_line;

 }
 // handle "normal" case

 }

 if (fork() == 0) {
 // ...

 execv(...);
 }

 // ...

}

whoops!

(whoops!)

CS33 Intro to Computer Systems XXI–17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (3)
next_line: while ((line = get_a_line()) != 0) {
 tokens = parse_line(line);

 for (int i=0; i < ntokens; i++) {
 if (redirection_symbol(token[i])) {
 // ...

 if (fork() == 0) {
 // ...

 execv(...);

 }
 // ... deal with &
 goto next_line;

 }
 // handle "normal" case

 }

 if (fork() == 0) {
 // ...

 execv(...);
 }

 // ... also deal with & here!
}

CS33 Intro to Computer Systems XXI–18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (Worse)
next_line: while ((line = get_a_line()) != 0) {
tokens = parse_line(line);

for (int i=0; i < ntokens; i++) {
if (redirection_symbol(token[i])) {
// ...

if (fork() == 0) {
// ...

execv(...);

}
// ... deal with &

goto next_line;

}
// handle "normal" case

}

if (fork() == 0) {
// ...

execv(...);
}

// ... also deal with & here!

}

CS33 Intro to Computer Systems XXI–19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Artisanal Programming

• Factor your code!
– A; D | B; D | C; D = (A | B | C); D

• Format as you write!
– donʼt run the formatter only just before handing it in
– your code should always be well formatted

• If you have a tough time understanding your
code, youʼll have a tougher time debugging it
and TAs will have an even tougher time
helping you

CS33 Intro to Computer Systems XXI–20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Itʼs Your Code

• Be proud of it!
– it not only works; it shows skillful artisanship

• Itʼs not enough to merely work
– others have to understand it

» (not to mention you ...)
– you (and others) have to maintain it

» shell 2 is coming soon!

CS33 Intro to Computer Systems XXI–21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Signals Part 1

CS33 Intro to Computer Systems XXI–22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

An Interlude Between Shells

• Shell 1
– it can run programs
– it can redirect I/O

• Signals
– a mechanism for coping with exceptions and

external events
– the mechanism needed for shell 2

• Shell 2
– it can control running programs

CS33 Intro to Computer Systems XXI–23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Whoops …

$ SometimesUsefulProgram xyz
Are you sure you want to proceed?
Are you really sure?
Reformatting of your disk will begin
in 3 seconds.
Everything you own will be deleted.
There's little you can do about it.
Too bad …

Y
Y

Oh dear…

CS33 Intro to Computer Systems XXI–24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

A Gentler Approach

• Signals
–get a process’s attention

» send it a signal
–process must either deal with it or be

terminated
» in some cases, the latter is the only option

CS33 Intro to Computer Systems XXI–25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Stepping Back …

• What are we trying to do?
– interrupt the execution of a program

» cleanly terminate it
or

» cleanly change its course

– not for the faint of heart
» it’s difficult
» it gets complicated
» (not done in Windows)

CS33 Intro to Computer Systems XXI–26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signals

• Generated (by OS) in response to
– exceptions (e.g., arithmetic errors, addressing

problems)
» synchronous signals

– external events (e.g., timer expiration, certain
keystrokes, actions of other processes)
» asynchronous signals

• Effect on process:
– termination (possibly producing a core dump)
– invocation of a function that has been set up to be a

signal handler
– suspension of execution
– resumption of execution

CS33 Intro to Computer Systems XXI–27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signal Types

SIGABRT abort called term, core
SIGALRM alarm clock term
SIGCHLD death of a child ignore
SIGCONT continue after stop cont
SIGFPE erroneous arithmetic operation term, core
SIGHUP hangup on controlling terminal term
SIGILL illegal instruction term, core
SIGINT interrupt from keyboard term
SIGKILL kill forced term
SIGPIPE write on pipe with no one to read term
SIGQUIT quit term, core
SIGSEGV invalid memory reference term, core
SIGSTOP stop process forced stop
SIGTERM software termination signal term
SIGTSTP stop signal from keyboard stop
SIGTTIN background read attempted stop
SIGTTOU background write attempted stop
SIGUSR1 application-defined signal 1 stop
SIGUSR2 application-defined signal 2 stop

CS33 Intro to Computer Systems XXI–28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Sending a Signal

• int kill(pid_t pid, int sig)
– send signal sig to process pid

• Also
– kill shell command
– type ctrl-c

» sends signal 2 (SIGINT) to current process
– type ctrl-\

» sends signal 3 (SIGQUIT) to current process
– type ctrl-z

» sends signal 20 (SIGTSTP) to current process
– do something bad

» bad address, bad arithmetic, etc.

CS33 Intro to Computer Systems XXI–29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Handling Signals

#include <signal.h>

typedef void (*sighandler_t)(int);
sighandler_t signal(int signo,
 sighandler_t handler);

sighandler_t OldHandler;

OldHandler = signal(SIGINT, NewHandler);

CS33 Intro to Computer Systems XXI–30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Special Handlers

• SIG_IGN
– ignore the signal
–signal(SIGINT, SIG_IGN);

• SIG_DFL
–use the default handler

» usually terminates the process
–signal(SIGINT, SIG_DFL);

CS33 Intro to Computer Systems XXI–31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Example

void sigloop() {
 while(1)
 ;
}

int main() {
 void handler(int);
 signal(SIGINT, handler);
 sigloop();
 return 1;
}
void handler(int signo) {
 printf("I received signal %d. "
 "Whoopee!!\n", signo);
}

CS33 Intro to Computer Systems XXI–32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Digression: Core Dumps

• Core dumps
– files (called “core”) that hold the contents of a

processʼs address space after termination by a
signal

– theyʼre large and rarely used, so theyʼre often
disabled by default

– use the ulimit command in bash to enable them

ulimit –c unlimited

– use gdb to examine the process (post-mortem
debugging)

gdb sig core

CS33 Intro to Computer Systems XXI–33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

sigaction

int sigaction(int sig, const struct sigaction *new,
 struct sigaction *old);
struct sigaction {

void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;

};

int main() {
struct sigaction act; void myhandler(int);
sigemptyset(&act.sa_mask); // zeroes the mask
act.sa_flags = 0;
act.sa_handler = myhandler;
sigaction(SIGINT, &act, NULL);
…

}

CS33 Intro to Computer Systems XXI–34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Example

int main() {
 void handler(int);
 struct sigaction act;
 act.sa_handler = handler;
 sigemptyset(&act.sa_mask);
 act.sa_flags = 0;
 sigaction(SIGINT, &act, 0);

 while(1)
 ;
 return 1;
}

void handler(int signo) {
 printf("I received signal %d. "
 "Whoopee!!\n", signo);
}

CS33 Intro to Computer Systems XXI–35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1

int main() {
 void handler(int);
 struct sigaction act;
 act.sa_handler = handler;
 sigemptyset(&act.sa_mask);
 act.sa_flags = 0;
 sigaction(SIGINT, &act, 0);

 while(1)
 ;
 return 1;
}

void handler(int signo) {
 printf("I received signal %d. "
 "Whoopee!!\n", signo);
}

You run the example program, then
quickly type ctrl-C. What is the most
likely explanation if the program then
terminates?

a) this “can’t happen”; thus
there’s a problem with the
system

b) you’re really quick or the
system is really slow (or both)

c) what we’ve told you so far
isn’t quite correct

CS33 Intro to Computer Systems XXI–36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Waiting for a Signal …

signal(SIGALRM, RespondToSignal);

…

struct timeval waitperiod = {0, 1000};
/* seconds, microseconds */

struct timeval interval = {0, 0};
struct itimerval timerval;
timerval.it_value = waitperiod;
timerval.it_interval = interval;

setitimer(ITIMER_REAL, &timerval, 0);
/* SIGALRM sent in ~one millisecond */

pause(); /* wait for it */
printf("success!\n");

CS33 Intro to Computer Systems XXI–37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2

signal(SIGALRM, RespondToSignal);

…

struct timeval waitperiod = {0, 1000};
/* seconds, microseconds */

struct timeval interval = {0, 0};
struct itimerval timerval;
timerval.it_value = waitperiod;
timerval.it_interval = interval;

setitimer(ITIMER_REAL, &timerval, 0);
/* SIGALRM sent in ~one millisecond */

pause(); /* wait for it */
printf("success!\n");

This program is guaranteed to print
“success!”.

a) no
b) yes

CS33 Intro to Computer Systems XXI–38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Masking Signals

setitimer(ITIMER_REAL, &timerval, 0);
/* SIGALRM sent in ~one millisecond */

pause(); /* wait for it */

No signals here, please!

CS33 Intro to Computer Systems XXI–39 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Masking Signals

mask SIGALRM
setitimer(ITIMER_REAL, &timerval, 0);

/* SIGALRM sent in ~one millisecond */

unmask and wait for SIGALRM

No signals here

CS33 Intro to Computer Systems XXI–40 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Doing It Safely
sigset_t set, oldset;
sigemptyset(&set);
sigaddset(&set, SIGALRM);
sigprocmask(SIG_BLOCK, &set, &oldset);

/* SIGALRM now masked */
…
setitimer(ITIMER_REAL, &timerval, 0);

/* SIGALRM sent in ~one millisecond */

sigsuspend(&oldset); /* unmask sig and wait */
/* SIGALRM masked again */

sigprocmask(SIG_SETMASK, &oldset, (sigset_t *)0);
/* SIGALRM unmasked */

printf("success!\n");

CS33 Intro to Computer Systems XXI–41 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signal Sets

• To clear a set:
int sigemptyset(sigset_t *set);

• To add or remove a signal from the set:
int sigaddset(sigset_t *set, int signo);
int sigdelset(sigset_t *set, int signo);

• Example: to refer to both SIGHUP and SIGINT:
sigset_t set;

sigemptyset(&set);
sigaddset(&set, SIGHUP);
sigaddset(&set, SIGINT);

CS33 Intro to Computer Systems XXI–42 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Masking (Blocking) Signals

#include <signal.h>
int sigprocmask(int how, const sigset_t *set,
 sigset_t *old);

– used to examine or change the signal mask of the calling
process
» how is one of three commands:

• SIG_BLOCK
– the new signal mask is the union of the current

signal mask and set
• SIG_UNBLOCK

– the new signal mask is the intersection of the
current signal mask and the complement of set

• SIG_SETMASK
– the new signal mask is set

CS33 Intro to Computer Systems XXI–43 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signal Handlers and Masking

• What if a signal occurs while a previous instance
is being handled?
– inconvenient …

• Signals are masked while being handled
– may mask other signals as well:

struct sigaction act; void myhandler(int);
sigemptyset(&act.sa_mask); // zeroes the mask
sigaddset(&act.sa_mask, SIGQUIT);
 // also mask SIGQUIT
act.sa_flags = 0;
act.sa_handler = myhandler;
sigaction(SIGINT, &act, NULL);

CS33 Intro to Computer Systems XXI–44 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Timed Out!

int TimedInput() {
signal(SIGALRM, timeout);
…
alarm(30); /* send SIGALRM in 30 seconds */
GetInput(); /* possible long wait for input */
alarm(0); /* cancel SIGALRM request */
HandleInput();
return(0);

nogood:
return(1);

}

void timeout() {
goto nogood; /* not legal but straightforward */

}

CS33 Intro to Computer Systems XXI–45 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Doing It Legally (but Weirdly)
sigjmp_buf context;

int TimedInput() {
signal(SIGALRM, timeout);
if (sigsetjmp(context, 1) == 0) {

alarm(30); // cause SIGALRM in 30 seconds
GetInput(); // possible long wait for input
alarm(0); // cancel SIGALRM request
HandleInput();
return 0;

} else
return 1;

}

void timeout() {
siglongjmp(context, 1); /* legal but weird */

}

CS33 Intro to Computer Systems XXI–46 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

sigsetjmp/siglongjmp

sigsetjmp

siglongjmp

Stack

TimedInput

CS33 Intro to Computer Systems XXI–47 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Exceptions

• Other languages support exception handling

try {
 something_a_bit_risky();

} catch(ArithmeticException e) {
 deal_with_it(e);

}

• Can we do something like this in C?

CS33 Intro to Computer Systems XXI–48 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Exception Handling in C

void Exception(int sig) {
 THROW(sig)
}

int computation(int a) {
 return a/(a-a);
}

int main() {
 signal(SIGFPE, Exception);

 signal(SIGSEGV, Exception);
 TRY {
 computation(1);

 } CATCH(SIGFPE) {
 fprintf(stderr,
 "SIGFPE\n");

 } CATCH(SIGSEGV) {
 fprintf(stderr,
 "SIGSEGV\n");

 } END

 return 0;
}

CS33 Intro to Computer Systems XXI–49 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Exception Handling in C

#define TRY \
 { \

 int excp; \
 if ((excp = \
 sigsetjmp(ctx, 1)) == 0)

#define CATCH(a_excp) \
 else if (excp == a_excp)

#define END }

#define THROW(excp) \
 siglongjmp(ctx, excp);

CS33 Intro to Computer Systems XXI–50 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Exception Handling in C
sigjmp_buf ctx;

int main() {
 ...

 {

 int excp;
 if ((excp = sigsetjmp(ctx, 1)) == 0) {
 computation(1);

 } else if (excp == SIGFPE) {
 fprintf(stderr, "SIGFPE\n");
 } else if (excp == SIGSEGV) {
 fprintf(stderr, "SIGFPE\n");

 }

 }
 return 0;
}

void exception(int sig) {
 siglongjmp(ctx, sig);
}

TRY

CATCH

CATCH

END

THROW

