CS 33

Signals Part 2

CS33 Intro to Computer Systems XXI1-1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

This program is guaranteed to print

Previous Quiz| “success'.

a) no
b) yes

signal (SIGALRM, RespondToSignal) ;

struct timeval waitperiod = {0, 1000};
/* seconds, microseconds */

struct timewval interval = {0, 0};

struct itimerval timerval;

timerval.l1t value = waltperiod;

timerval.lt interval = interval;

setitimer (ITIMER REAL, &timerval, O0);

/* SIGALRM sent in ~one millisecond */
pause () ; /* wait for it */
printf ("success!\n") ;

CS33 Intro to Computer Systems XXI1-2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Masking Signals

setitimer (ITIMER REAL, &timerval, O0);
/* SIGALRM sent in ~one millisecond */

No signals here, please!

pause () ; /* wait for it */

CS33 Intro to Computer Systems XXII-3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Masking Signals

mask SIGALRM
setitimer (ITIMER REAL, &timerval, O0);
/* SIGALRM sent in ~one millisecond */

No signals here

unmask and wait for SIGALRM

CS33 Intro to Computer Systems XXI1-4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Doing It Safely

sigset t set, oldset;
sigemptyset (&set) ;

sigaddset (&set, SIGALRM) ;
sigprocmask (SIG BLOCK, é&set,

&oldset) ;

/* SIGALRM now masked */

setitimer (ITIMER REAL, &timerval, O0);
/* SIGALRM sent in ~one millisecond */

sigsuspend (&oldset) ; /* unmask sig and wait */

/* SIGALRM masked again */

sigprocmask (SIG SETMASK, é&oldset, (sigset t *)0);

/* SIGALRM unmasked */

printf ("success!\n");

CS33 Intro to Computer Systems XXII-5

Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signal Sets

* To clear a set:
int sigemptyset (sigset t *set);
 To add or remove a signal from the set:

int sigaddset (sigset t *set, 1int signo);
int sigdelset (sigset t *set, 1int signo);

« Example: to refer to both SIGHUP and SIGINT:

sigset t set;

sigemptyset (&set) ;
sigaddset (&set, SIGHUP) ;
sigaddset (&set, SIGINT) ;

CS33 Intro to Computer Systems XXI1-6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Masking (Blocking) Signals

#include <signal.h>
int sigprocmask (int how, const sigset t *set,
sigset t *old);

— used to examine or change the signal mask of the calling
process

» how is one of three commands:
« SIG_BLOCK

—the new signal mask is the union of the current
signal mask and set

. SIG_UNBLOCK

—the new signal mask is the intersection of the
current signal mask and the complement of set

* SIG_SETMASK
—the new signal mask is set

CS33 Intro to Computer Systems XXII-7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signal Handlers and Masking

« What if a signal occurs while a previous instance
is being handled?

— inconvenient ...

« Signals are masked while being handled
— may mask other signals as well:

struct sigaction act; woid myhandler (int) ;
sigemptyset (&act.sa mask); // zeroes the mask
sigaddset (&act.sa mask, SIGQUIT);

// also mask SIGQUIT
act.sa flags = 0;
act.sa handler = myhandler;
sigaction (SIGINT, &act, NULL);

CS33 Intro to Computer Systems XXI1-8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Timed Out!

int TimedInput () {
signal (SIGALRM, timeout);

alarm(30) ; /* send SIGALRM in 30 seconds */

GetInput () ; /* possible long wait for input */
alarm(0) ; /* cancel SIGALRM request */

HandleInput () ;

return (0) ;
nogood:

return (1) ;

void timeout () {
goto nogood; /* not legal but straightforward */

}

CS33 Intro to Computer Systems XXI1-9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Doing It Legally (but Weirdly)

sigjmp buf context;

int TimedInput () {

signal (SIGALRM, timeout):;

1f (sigsetjmp (context, 1) == 0) {
alarm(30); // cause SIGALRM in 30 seconds
GetInput (); // possible long wait for input
alarm(0) ; // cancel SIGALRM request
HandleInput () ;
return O;

} else
return 1;

}

void timeout () {
siglongjmp (context, 1); /* legal but weird */
}

CS33 Intro to Computer Systems XXI1-10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

sigsetjmp/siglongjmp

< TimedInput

< sigsetjmp

siglongj mp>

Stack

CS33 Intro to Computer Systems XXI11-11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Job Control

S who
— foreground job
$ multiprocessProgram
— foreground job
~Z
stopped
$ bg
[1] multiprocessProgram &
— multiprocessProgram becomes background job 1
$ longRunningProgram &
[2]
S fg %1
multiprocessProgram
— multiprocessProgram is now the foreground job
~C
$

CS33 Intro to Computer Systems XXI1-12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Process Groups

« Set of processes sharing the
window/keyboard

— sometimes called a job

* Foreground process group/job
— currently associated with window/keyboard
— receives keyboard-generated signals

« Background process group/job

— not currently associated with window/keyboard

— doesn’t currently receive keyboard-generated
signals

CS33 Intro to Computer Systems XXI1-13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Keyboard-Generated Signals

* You type ctri-C

 How does the system know which
process(es) to send the signal to?

pgroup 16

N

Window

D

pid 16
/ pgroup 16

Shell

CS33 Intro to Computer Systems

XXlI-14

Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Foreground Job

pid 16
pgroup 16

pgroup 17 \

Shell

pid 17

$ multiprocessProgram pid 23
~C

pid 42

pgroup 17

CS33 Intro to Computer Systems XXII-15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Background Job

pgroup 16 \ pid 16
pgroup 16
Shell
Window
pid 164
$ multiprocessProgram?2 & pid 179
S ~C
pid 196
pgroup 164

CS33 Intro to Computer Systems XXII-16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Stopping a Foreground Job

{ pgroup‘1ﬁ7 \

pid 16
/ pgroup 16

Shell
Window

pid 17
$ multiprocessProgram pid 23
~Z
[2] stopped pid 42
S

pgroup 17

CS33 Intro to Computer Systems XXI-17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Backgrounding a Stopped Job

pgroup 16

N

N,/ pid 16
q’(/\/ \/ pgroup 16

M

Shell
Window

pid 17
$ multiprocessProgram pid 23
~Z
[2] stopped pid 42
> bg
S pgroup 17

CS33 Intro to Computer Systems

XXII-18

Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Foregrounding a Job

pgroup 17 pid 16
| pgroup 16
Shell
Window
pid 17
$ multiprocessProgram pid 23
~7Z
[2] stopped pid 42
S bg
S fg %2 pgroup 17

CS33 Intro to Computer Systems XXI1-19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1

$ long running progl &
$ long running progz
~7

[2] stopped

> °C Which process group receives the
SIGINT signal?
a) the one containing
long_running_prog1
b) the one containing
long_running_prog2
c) the one containing the shell

CS33 Intro to Computer Systems XXI11-20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Creating a Process Group

if (fork() == 0) {
// child
setpgid (0, 0);
/* puts current process into a
new process group whose ID 1s
the process’s pid.
Children of this process will be 1n

this process's process group.

*/

execv(...);

}
// parent

CS33 Intro to Computer Systems XXl11-21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Setting the Foreground Process Group

tcsetpgrp (fd, pgid) ;
// sets the process group of the
// terminal (window) referenced by

// file descriptor fd to be pgid

CS33 Intro to Computer Systems XXI1-22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Background Input and Output

« Background process reads from keyboard

— the keyboard really should be reserved for
foreground process

— background process gets SIGTTIN
» suspends it by default
« Background process writes to display
— display also used by foreground process
— could be willing to share

— background process gets SIGTTOU
» suspends it (by default)
» but reasonable to ignore it

CS33 Intro to Computer Systems XXI1-23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Kill: Details

* int kill(pid t pid, int sig)
— if pid > 0, signal sig sent to process pid

— if pid == 0, signal sig sent to all processes in the
caller’s process group

— if pid == -1, signal sig sent to all processes in the
system for which sender has permission to do so

— if pid < -1, signal sig is sent to all processes in
process group —pid

CS33 Intro to Computer Systems XXll-24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Process Life Cycle

Non-
Xisten

CS33 Intro to Computer Systems XXI1-25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Reaping: Zombie Elimination

* Shell must call waitpid on each child

— easy for a foreground child
— what about background?

pid t waitpid(pid t pid, int *status, int options);

— pid values:
<=1 any child process whose process group is |pid|
-1 any child process
0 any child process whose process group is that of caller

>0 child process whose ID is equal to pid

— walt (&status) is equivalentto waitpid (-1, &status, 0)

CS33 Intro to Computer Systems XXI11-26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

(continued)

pid t waitpid(pid t pid, int *status, int options);
— options are some combination of the following

» WNOHANG
* return immediately if no child has exited (returns 0)

» WUNTRACED
« also return if a child has been stopped (suspended)

» WCONTINUED
« also return if a child has been continued (resumed)

CS33 Intro to Computer Systems XXI1-27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

When to Call waitpid

« Shell reports status only when it is about to
display its prompt

— thus sufficient to check on background jobs just
before displaying prompt

CS33 Intro to Computer Systems XXI11-28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

waitpid status

« WIFEXITED(*status): 1 if the process terminated normally
and 0 otherwise

« WEXITSTATUS(*status): argument to exit

« WIFSIGNALED(*status): 1 if the process was terminated
by a signal and 0 otherwise

« WTERMSIG(*status): the signal which terminated the
process if it terminated by a signal

« WIFSTOPPED(*status): 1 if the process was stopped by a
signal

« WSTOPSIG(*status): the signal which stopped the
process if it was stopped by a signal

« WIFCONTINUED(*status): 1 if the process was resumed
by SIGCONT and 0 otherwise

CS33 Intro to Computer Systems XXI11-29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Example (in Shell)

int wret, wstatus;

while ((wret = waitpid (-1, &wstatus, WNOHANG|WUNTRACED)) > 0) {
// examine all children who’ve terminated or stopped
if (WIFEXITED (wstatus)) {

// terminated normally

}
if (WIFSIGNALED (wstatus)) {

// terminated by a signal

}
if (WIFSTOPPED (wstatus)) {

// stopped

}

CS33 Intro to Computer Systems XXI11-30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Process Relationships (1)

)

[Login 1 [Login 2] Login 3]

[é/][\‘][l][é/][\é]
N\

[Sub proc.] [Sub proc.]

CS33 Intro to Computer Systems XXI11-31 Copyright © 2023 Thomas W . Doeppner . All rights reserved :

Process Relationships (2)

)

[Sub proc.] [Sub proc.]

CS33 Intro to Computer Systems XXI1-32 Copyright © 2023 Thomas W . Doeppner . All rights reserved :

Process Relationships (3)

[Init]

[Sub proc.] [Sub proc.]

CS33 Intro to Computer Systems XXI1-33 Copyright © 2023 Thomas W . Doeppner . All rights reserved :

Signals, Fork, and Exec

// set up signal handlers
i1f (fork() == 0) {
// what happens if child gets signal?

signal (SIGINT, SIG IGN);

signal (SIGFPE, handler);

signal (SIGQUIT, SIG DFL);

execv ("new prog", argv, NULL) ;

// what happens if SIGINT, SIGFPE,
// or SIGQUIT occur?

}

CS33 Intro to Computer Systems XXI1-34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signals and System Calls

 What happens if a signal occurs while a
process is doing a system call?

— handler not invoked until just before system call
returns to user

» system call might terminate early because of signal
— system call completes
— signal handler is invoked

— user code resumed as if the system call has just
returned

CS33 Intro to Computer Systems XXI1-35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signals and Lengthy System Calls

 Some system calls take a long time

— large 1/O transfer

» multi-gigabyte read or write request probably done
as a sequence of smaller pieces

— a long wait is required

» a read from the keyboard requires waiting for
someone to type something

* |If signal arrives in the midst of lengthy
system call, handler invoked:
— after current piece is completed
— after cancelling wait

CS33 Intro to Computer Systems XXI11-36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Interrupted System Calls

 What if a signal is handled before the
system call completes?

— invoke handler, then return from system
call prematurely

* if one or more pieces were completed,
return total number of bytes transferred

« otherwise return “interrupted” error

CS33 Intro to Computer Systems XXI1-37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Interrupted System Calls: Non-
Lengthy Case

while (read(fd, buffer, buf size) == -1) {
i1f (errno == EINTR) {
/* interrupted system call — try again */
continue;

}

/* the error i1is more serious */
perror ("big trouble");
exit (1) ;

CS33 Intro to Computer Systems XXI1-38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2

int ret;
char buf[1024*1024*1024];

fillbuf (buf) ;

ret = write(l, buf, 1024*1024*1024);

* The value of ret is:
a) any integer in the range [-1, 1024*1024*1024]
b) either -1 or 1024*1024*1024
c) either -1, 0, or 1024*1024*1024

CS33 Intro to Computer Systems XXI11-39 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Interrupted System Calls: Lengthy

Case

char buf [BSIZE];
fillbuf (buf) ;
long remaining =
char *bptr = buf;
while (1) {

long num xfrd =

BSIZE;

write (f£d,

bptr, remaining) ;

if (num xfrd == -1) {
if (errno == EINTR) {
// interrupted early
continue;

}

perror ("big trouble");
exit (1) ;

if (num xfrd < remaining) {
/* interrupted after the

first step */

remaining —= num xfrd;
bptr += num xfrd;
continue;

}

// success!
break;

CS33 Intro to Computer Systems

XXII-40

Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (1)

main() {
void handler (int) ;
signal (SIGINT, handler);

/* long-running buggy code */

void handler (int sig) {
/* clean up */
exi1t (1) ;
}

CS33 Intro to Computer Systems XXI1-41 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (2)

computation state t state; long running procedure()

while (a long time) {

main() { update state(&state);
void handler (int) ; compute more();
}
signal (SIGINT, handler); }
long running procedure(); void handler (int sig) {
} display (&state) ;

CS33 Intro to Computer Systems XXI1-42 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

{

Asynchronous Signals (3)

main () { void handler (int sig) {
void handler (int) ;
/* deal with signal */
signal (SIGINT, handler);
myputs ("equally important "
/* complicated program */ "message\n") ;

myputs ("important message\n") ;

/* more program */

CS33 Intro to Computer Systems XXI1-43 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (4)

char buf [BSIZE];
int pos;
void myputs (char *str) {
int len = strlen(str);
for (int i=0; i<len; i++, pos+t+) {
buf [pos] = str[i];
if ((buf[pos] == '\n') || (pos == BSIZE-1)) {
write (1, buf, pos+l);
pos = —-1;

CS33 Intro to Computer Systems XXll-44 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Async-Signal Safety

 Which library functions are safe to use within

abort
accept
access
aio_error
aio_return
aio_suspend
alarm

bind
cfgetispeed
cfgetospeed
cfsetispeed
cfsetospeed
chdir
chmod
chown
clock gettime
close
connect
creat

dup

dup2
execle
execve
_exit
fchmod
fchown
fcntl
fdatasync
fork
fpathconf
fstat
fsync
ftruncate
getegid
geteuid
getgid
getgroups
getpeername
getpgrp
getpid

signal handlers?

getppid
getsockname
getsockopt
getuid

kill

link

listen
Iseek

Istat

mkdir
mkfifo
open
pathconf
pause

pipe

poll

posix_trace_event-

pselect
raise
read

readlink
recv
recvfrom
recvmsg
rename
rmdir
select
sem_post
send
sendmsg
sendto
setgid
setpgid
setsid
setsockopt
setuid
shutdown
sigaction
sigaddset
sigdelset

sigemptyset
sigfillset
sigismember
signal
sigpause
sigpending
sigprocmask
sigqueue
sigsuspend
sleep
sockatmark
socket
socketpair
stat

symlink
sysconf
tcdrain
tcflow
tcflush
tcgetattr

tcgetpgrp
tcsendbreak
tcsetattr
tcsetpgrp
time

timer _getoverrun
timer _gettime
timer_settime
times

umask

uname

unlink

utime

wait

waitpid

write

CS33 Intro to Computer Systems

XXII-45

Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 3

Printf is not listed as being async-signal safe.
Can it be implemented so that it is?

a) yes, but it would be so complicated, it’s not done
b) yes, it can be easily made async-signal safe
c) no, it’s inherently not async-signal safe

CS33 Intro to Computer Systems XXI11-46 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

