
CS33 Intro to Computer Systems XXII–1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Signals Part 2

CS33 Intro to Computer Systems XXII–2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Previous Quiz

signal(SIGALRM, RespondToSignal);

…

struct timeval waitperiod = {0, 1000};
/* seconds, microseconds */

struct timeval interval = {0, 0};
struct itimerval timerval;
timerval.it_value = waitperiod;
timerval.it_interval = interval;

setitimer(ITIMER_REAL, &timerval, 0);
/* SIGALRM sent in ~one millisecond */

pause(); /* wait for it */
printf("success!\n");

This program is guaranteed to print
“success!”.

a) no
b) yes

CS33 Intro to Computer Systems XXII–3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Masking Signals

setitimer(ITIMER_REAL, &timerval, 0);
/* SIGALRM sent in ~one millisecond */

pause(); /* wait for it */

No signals here, please!

CS33 Intro to Computer Systems XXII–4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Masking Signals

mask SIGALRM
setitimer(ITIMER_REAL, &timerval, 0);

/* SIGALRM sent in ~one millisecond */

unmask and wait for SIGALRM

No signals here

CS33 Intro to Computer Systems XXII–5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Doing It Safely
sigset_t set, oldset;
sigemptyset(&set);
sigaddset(&set, SIGALRM);
sigprocmask(SIG_BLOCK, &set, &oldset);

/* SIGALRM now masked */
…
setitimer(ITIMER_REAL, &timerval, 0);

/* SIGALRM sent in ~one millisecond */

sigsuspend(&oldset); /* unmask sig and wait */
/* SIGALRM masked again */

sigprocmask(SIG_SETMASK, &oldset, (sigset_t *)0);
/* SIGALRM unmasked */

printf("success!\n");

CS33 Intro to Computer Systems XXII–6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signal Sets

• To clear a set:
int sigemptyset(sigset_t *set);

• To add or remove a signal from the set:
int sigaddset(sigset_t *set, int signo);
int sigdelset(sigset_t *set, int signo);

• Example: to refer to both SIGHUP and SIGINT:
sigset_t set;

sigemptyset(&set);
sigaddset(&set, SIGHUP);
sigaddset(&set, SIGINT);

CS33 Intro to Computer Systems XXII–7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Masking (Blocking) Signals

#include <signal.h>
int sigprocmask(int how, const sigset_t *set,
 sigset_t *old);

– used to examine or change the signal mask of the calling
process
» how is one of three commands:

• SIG_BLOCK
– the new signal mask is the union of the current

signal mask and set
• SIG_UNBLOCK

– the new signal mask is the intersection of the
current signal mask and the complement of set

• SIG_SETMASK
– the new signal mask is set

CS33 Intro to Computer Systems XXII–8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signal Handlers and Masking

• What if a signal occurs while a previous instance
is being handled?

– inconvenient …
• Signals are masked while being handled

– may mask other signals as well:

struct sigaction act; void myhandler(int);
sigemptyset(&act.sa_mask); // zeroes the mask
sigaddset(&act.sa_mask, SIGQUIT);
 // also mask SIGQUIT
act.sa_flags = 0;
act.sa_handler = myhandler;
sigaction(SIGINT, &act, NULL);

CS33 Intro to Computer Systems XXII–9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Timed Out!

int TimedInput() {
signal(SIGALRM, timeout);
…
alarm(30); /* send SIGALRM in 30 seconds */
GetInput(); /* possible long wait for input */
alarm(0); /* cancel SIGALRM request */
HandleInput();
return(0);

nogood:
return(1);

}

void timeout() {
goto nogood; /* not legal but straightforward */

}

CS33 Intro to Computer Systems XXII–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Doing It Legally (but Weirdly)
sigjmp_buf context;

int TimedInput() {
signal(SIGALRM, timeout);
if (sigsetjmp(context, 1) == 0) {

alarm(30); // cause SIGALRM in 30 seconds
GetInput(); // possible long wait for input
alarm(0); // cancel SIGALRM request
HandleInput();
return 0;

} else
return 1;

}

void timeout() {
siglongjmp(context, 1); /* legal but weird */

}

CS33 Intro to Computer Systems XXII–11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

sigsetjmp/siglongjmp

sigsetjmp

siglongjmp

Stack

TimedInput

CS33 Intro to Computer Systems XXII–12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Job Control
$ who

– foreground job
$ multiprocessProgram

– foreground job
^Z
stopped
$ bg
[1] multiprocessProgram &

– multiprocessProgram becomes background job 1
$ longRunningProgram &
[2]
$ fg %1
multiprocessProgram

– multiprocessProgram is now the foreground job
^C
$

CS33 Intro to Computer Systems XXII–13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Process Groups

• Set of processes sharing the
window/keyboard

– sometimes called a job
• Foreground process group/job

– currently associated with window/keyboard
– receives keyboard-generated signals

• Background process group/job
– not currently associated with window/keyboard
– doesn’t currently receive keyboard-generated

signals

CS33 Intro to Computer Systems XXII–14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Keyboard-Generated Signals

• You type ctrl-C
• How does the system know which

process(es) to send the signal to?

Window

pid 16
pgroup 16

pgroup 16

Shell

CS33 Intro to Computer Systems XXII–15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Foreground Job

Window
Shell

pid 16
pgroup 16

pgroup 17

pid 17

pid 23

pid 42

pgroup 17

$ multiprocessProgram
^C

CS33 Intro to Computer Systems XXII–16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Background Job

Window
Shell

pid 16
pgroup 16

pgroup 16

pid 164

pid 179

pid 196

pgroup 164

$ multiprocessProgram2 &
$ ^C

CS33 Intro to Computer Systems XXII–17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Stopping a Foreground Job

Window
Shell

pid 16
pgroup 16

pgroup 16

pid 17

pid 23

pid 42

pgroup 17

$ multiprocessProgram
^Z
[2] stopped
$

pgroup 17

CS33 Intro to Computer Systems XXII–18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Backgrounding a Stopped Job

Window
Shell

pid 16
pgroup 16

pgroup 16

pid 17

pid 23

pid 42

pgroup 17

$ multiprocessProgram
^Z
[2] stopped
$
$

bg

CS33 Intro to Computer Systems XXII–19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

pgroup 16

Foregrounding a Job

Window
Shell

pid 16
pgroup 16

pgroup 17

pid 17

pid 23

pid 42

pgroup 17

$ multiprocessProgram
^Z
[2] stopped
$ bg
$ fg %2

CS33 Intro to Computer Systems XXII–20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1

$ long_running_prog1 &
$ long_running_prog2
^Z
[2] stopped
$ Which process group receives the

SIGINT signal?
a) the one containing

long_running_prog1
b) the one containing

long_running_prog2
c) the one containing the shell

^C

CS33 Intro to Computer Systems XXII–21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Creating a Process Group

if (fork() == 0) {
 // child

 setpgid(0, 0);

 /* puts current process into a

 new process group whose ID is

 the process’s pid.

 Children of this process will be in

 this process's process group.

 */

 ...

 execv(...);

}

// parent

CS33 Intro to Computer Systems XXII–22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Setting the Foreground Process Group

tcsetpgrp(fd, pgid);
 // sets the process group of the
 // terminal (window) referenced by
 // file descriptor fd to be pgid

CS33 Intro to Computer Systems XXII–23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Background Input and Output

• Background process reads from keyboard
– the keyboard really should be reserved for

foreground process
– background process gets SIGTTIN

» suspends it by default

• Background process writes to display
– display also used by foreground process
– could be willing to share
– background process gets SIGTTOU

» suspends it (by default)
» but reasonable to ignore it

CS33 Intro to Computer Systems XXII–24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Kill: Details

• int kill(pid_t pid, int sig)
– if pid > 0, signal sig sent to process pid
– if pid == 0, signal sig sent to all processes in the

caller’s process group
– if pid == −1, signal sig sent to all processes in the

system for which sender has permission to do so
– if pid < −1, signal sig is sent to all processes in

process group −pid

CS33 Intro to Computer Systems XXII–25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Process Life Cycle

ActiveNon-
Existent Zombie

CS33 Intro to Computer Systems XXII–26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Reaping: Zombie Elimination

• Shell must call waitpid on each child
– easy for a foreground child
– what about background?

pid_t waitpid(pid_t pid, int *status, int options);

– pid values:
< −1 any child process whose process group is |pid|
−1 any child process
0 any child process whose process group is that of caller
> 0 child process whose ID is equal to pid

− wait(&status) is equivalent to waitpid(-1, &status, 0)

CS33 Intro to Computer Systems XXII–27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

(continued)

pid_t waitpid(pid_t pid, int *status, int options);

– options are some combination of the following
» WNOHANG

• return immediately if no child has exited (returns 0)
» WUNTRACED

• also return if a child has been stopped (suspended)
» WCONTINUED

• also return if a child has been continued (resumed)

CS33 Intro to Computer Systems XXII–28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

When to Call waitpid

• Shell reports status only when it is about to
display its prompt

– thus sufficient to check on background jobs just
before displaying prompt

CS33 Intro to Computer Systems XXII–29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

waitpid status

• WIFEXITED(*status): 1 if the process terminated normally
and 0 otherwise

• WEXITSTATUS(*status): argument to exit
• WIFSIGNALED(*status): 1 if the process was terminated

by a signal and 0 otherwise
• WTERMSIG(*status): the signal which terminated the

process if it terminated by a signal
• WIFSTOPPED(*status): 1 if the process was stopped by a

signal
• WSTOPSIG(*status): the signal which stopped the

process if it was stopped by a signal
• WIFCONTINUED(*status): 1 if the process was resumed

by SIGCONT and 0 otherwise

CS33 Intro to Computer Systems XXII–30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Example (in Shell)
int wret, wstatus;
while ((wret = waitpid(-1, &wstatus, WNOHANG|WUNTRACED)) > 0){
 // examine all children who’ve terminated or stopped
 if (WIFEXITED(wstatus)) {
 // terminated normally

 ...

 }
 if (WIFSIGNALED(wstatus)) {
 // terminated by a signal

 ...
 }

 if (WIFSTOPPED(wstatus)) {
 // stopped

 ...
 }

}

CS33 Intro to Computer Systems XXII–31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Process Relationships (1)

Init

Login 1 Login 2 Login 3

cmd cmd cmd cmd cmd

Sub proc. Sub proc.

CS33 Intro to Computer Systems XXII–32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Process Relationships (2)

Init

Login 1 Login 2 Login 3

cmd cmd cmd cmd cmd

Sub proc. Sub proc.

CS33 Intro to Computer Systems XXII–33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Process Relationships (3)

Init

Login 1 Login 2 Login 3

cmd cmd cmd cmd cmd

Sub proc. Sub proc.

CS33 Intro to Computer Systems XXII–34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signals, Fork, and Exec

// set up signal handlers ...
if (fork() == 0) {
 // what happens if child gets signal?
 ...
 signal(SIGINT, SIG_IGN);

 signal(SIGFPE, handler);
 signal(SIGQUIT, SIG_DFL);
 execv("new prog", argv, NULL);
 // what happens if SIGINT, SIGFPE,
 // or SIGQUIT occur?
}

CS33 Intro to Computer Systems XXII–35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signals and System Calls

• What happens if a signal occurs while a
process is doing a system call?

– handler not invoked until just before system call
returns to user
» system call might terminate early because of signal

– system call completes
– signal handler is invoked
– user code resumed as if the system call has just

returned

CS33 Intro to Computer Systems XXII–36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signals and Lengthy System Calls

• Some system calls take a long time
– large I/O transfer

» multi-gigabyte read or write request probably done
as a sequence of smaller pieces

– a long wait is required
» a read from the keyboard requires waiting for

someone to type something

• If signal arrives in the midst of lengthy
system call, handler invoked:

– after current piece is completed
– after cancelling wait

CS33 Intro to Computer Systems XXII–37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Interrupted System Calls

• What if a signal is handled before the
system call completes?
– invoke handler, then return from system

call prematurely
• if one or more pieces were completed,

return total number of bytes transferred
• otherwise return “interrupted” error

CS33 Intro to Computer Systems XXII–38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Interrupted System Calls: Non-
Lengthy Case

while(read(fd, buffer, buf_size) == –1) {
 if (errno == EINTR) {
 /* interrupted system call — try again */
 continue;
 }
 /* the error is more serious */
 perror("big trouble");
 exit(1);
}

CS33 Intro to Computer Systems XXII–39 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2

int ret;
char buf[1024*1024*1024];

fillbuf(buf);

ret = write(1, buf, 1024*1024*1024);

• The value of ret is:
a) any integer in the range [-1, 1024*1024*1024]
b) either -1 or 1024*1024*1024
c) either -1, 0, or 1024*1024*1024

CS33 Intro to Computer Systems XXII–40 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Interrupted System Calls: Lengthy
Case

char buf[BSIZE];
fillbuf(buf);
long remaining = BSIZE;
char *bptr = buf;
while (1){
 long num_xfrd = write(fd,
 bptr, remaining);
 if (num_xfrd == –1) {
 if (errno == EINTR) {
 // interrupted early
 continue;

 }
 perror("big trouble");
 exit(1);
 }

if (num_xfrd < remaining) {
 /* interrupted after the
 first step */
 remaining -= num_xfrd;
 bptr += num_xfrd;
 continue;
 }
 // success!
 break;
}

CS33 Intro to Computer Systems XXII–41 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (1)

main() {
void handler(int);
signal(SIGINT, handler);

 ... /* long-running buggy code */

}

void handler(int sig) {
... /* clean up */
exit(1);

}

CS33 Intro to Computer Systems XXII–42 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (2)

computation_state_t state;

main() {

 void handler(int);

 signal(SIGINT, handler);

 long_running_procedure();

}

long_running_procedure() {

 while (a_long_time) {

 update_state(&state);

 compute_more();

 }

}

void handler(int sig) {
 display(&state);

}

CS33 Intro to Computer Systems XXII–43 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (3)

main() {
 void handler(int);

 signal(SIGINT, handler);

 ... /* complicated program */

 myputs("important message\n");

 ... /* more program */

}

void handler(int sig) {

 ... /* deal with signal */

 myputs("equally important "
 "message\n");
}

CS33 Intro to Computer Systems XXII–44 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (4)

char buf[BSIZE];
int pos;
void myputs(char *str) {
 int len = strlen(str);
 for (int i=0; i<len; i++, pos++) {
 buf[pos] = str[i];
 if ((buf[pos] == '\n') || (pos == BSIZE-1)) {
 write(1, buf, pos+1);
 pos = -1;
 }
 }
}

CS33 Intro to Computer Systems XXII–45 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Async-Signal Safety

• Which library functions are safe to use within
signal handlers?

– abort
– accept
– access
– aio_error
– aio_return
– aio_suspend
– alarm
– bind
– cfgetispeed
– cfgetospeed
– cfsetispeed
– cfsetospeed
– chdir
– chmod
– chown
– clock_gettime
– close
– connect
– creat
– dup

– dup2
– execle
– execve
– _exit
– fchmod
– fchown
– fcntl
– fdatasync
– fork
– fpathconf
– fstat
– fsync
– ftruncate
– getegid
– geteuid
– getgid
– getgroups
– getpeername
– getpgrp
– getpid

– getppid
– getsockname
– getsockopt
– getuid
– kill
– link
– listen
– lseek
– lstat
– mkdir
– mkfifo
– open
– pathconf
– pause
– pipe
– poll
– posix_trace_event
– pselect
– raise
– read

– readlink
– recv
– recvfrom
– recvmsg
– rename
– rmdir
– select
– sem_post
– send
– sendmsg
– sendto
– setgid
– setpgid
– setsid
– setsockopt
– setuid
– shutdown
– sigaction
– sigaddset
– sigdelset

– sigemptyset
– sigfillset
– sigismember
– signal
– sigpause
– sigpending
– sigprocmask
– sigqueue
– sigsuspend
– sleep
– sockatmark
– socket
– socketpair
– stat
– symlink
– sysconf
– tcdrain
– tcflow
– tcflush
– tcgetattr

– tcgetpgrp
– tcsendbreak
– tcsetattr
– tcsetpgrp
– time
– timer_getoverrun
– timer_gettime
– timer_settime
– times
– umask
– uname
– unlink
– utime
– wait
– waitpid
– write

CS33 Intro to Computer Systems XXII–46 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 3

Printf is not listed as being async-signal safe.
Can it be implemented so that it is?

a) yes, but it would be so complicated, it’s not done
b) yes, it can be easily made async-signal safe
c) no, it’s inherently not async-signal safe

