
CS33 Intro to Computer Systems XXIII–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Signals Part 3

A process may wait only for its children to terminate (this excludes grandchildren).

CS33 Intro to Computer Systems XXIII–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Reaping: Zombie Elimination

• Shell must call waitpid on each child
– easy for a foreground child
– what about background?

pid_t waitpid(pid_t pid, int *status, int options);
– pid values:

< −1 any child process whose process group is |pid|
−1 any child process
0 any child process whose process group is that of caller
> 0 child process whose ID is equal to pid

− wait(&status) is equivalent to waitpid(-1, &status, 0)

If a process is found, waitpid returns the process ID of the process that has been
suspended or resumed.

CS33 Intro to Computer Systems XXIII–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

(continued)

pid_t waitpid(pid_t pid, int *status, int options);
– options are some combination of the following

» WNOHANG
• return immediately if no child has exited (returns 0)

» WUNTRACED
• also return if a child has been stopped (suspended)

» WCONTINUED
• also return if a child has been continued (resumed)

CS33 Intro to Computer Systems XXIII–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

When to Call waitpid

• Shell reports status only when it is about to
display its prompt

– thus sufficient to check on background jobs just
before displaying prompt

These are macros that can be applied to the status output argument of waitpid. Note
that “terminated normally” means that the process terminated by calling exit.
Otherwise, it was terminated because it received a signal, which it neither ignored nor
had a handler for, whose default action was termination.

CS33 Intro to Computer Systems XXIII–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

waitpid status

• WIFEXITED(*status): 1 if the process terminated normally
and 0 otherwise

• WEXITSTATUS(*status): argument to exit
• WIFSIGNALED(*status): 1 if the process was terminated

by a signal and 0 otherwise
• WTERMSIG(*status): the signal which terminated the

process if it terminated by a signal
• WIFSTOPPED(*status): 1 if the process was stopped by a

signal
• WSTOPSIG(*status): the signal which stopped the

process if it was stopped by a signal
• WIFCONTINUED(*status): 1 if the process was resumed

by SIGCONT and 0 otherwise

This code might be executed by a shell just before it displays its prompt. The loop
iterates through all child processes that have either terminated or stopped. The
WNOHANG option causes waitpid to return 0 (rather than waiting) if the caller has
extant children, but there are no more that have either terminated or stopped. If the
caller has no children, then waitpid returns -1.

CS33 Intro to Computer Systems XXIII–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Example (in Shell)
int wret, wstatus;
while ((wret = waitpid(-1, &wstatus, WNOHANG|WUNTRACED)) > 0){
 // examine all children who’ve terminated or stopped
 if (WIFEXITED(wstatus)) {
 // terminated normally
 ...
 }
 if (WIFSIGNALED(wstatus)) {
 // terminated by a signal
 ...
 }
 if (WIFSTOPPED(wstatus)) {
 // stopped
 ...
 }
}

The init process is the common ancestor of all other processes in the system. It
continues to exist while the system is running. It starts things going soon after the
system is booted by forking child processes that exec the login code. These login
processes then exec the shell. Note that, since only the parent may wait for a child’s
termination, only parent-child relationships are maintained between processes.

CS33 Intro to Computer Systems XXIII–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Process Relationships (1)

Init

Login 1 Login 2 Login 3

cmd cmd cmd cmd cmd

Sub proc. Sub proc.

When a process terminates, all of its children are inherited by the init process, process
number 1.

CS33 Intro to Computer Systems XXIII–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Process Relationships (2)

Init

Login 1 Login 2 Login 3

cmd cmd cmd cmd cmd

Sub proc. Sub proc.

CS33 Intro to Computer Systems XXIII–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Process Relationships (3)

Init

Login 1 Login 2 Login 3

cmd cmd cmd cmd cmd

Sub proc. Sub proc.

As makes sense, the signal-handling state of the parent is reproduced in the child.

What also makes sense is that, if a signal has been given a handler, then, after an exec,
since the handler no longer exists, the signal reverts to default actions.

What at first glance makes less sense is that ignored signals stay ignored after an exec
(of course, signals with default action stay that way after the exec). The intent is that
this allows one to run a program protected from certain signals.

CS33 Intro to Computer Systems XXIII–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signals, Fork, and Exec

// set up signal handlers ...
if (fork() == 0) {
 // what happens if child gets signal?
 ...
 signal(SIGINT, SIG_IGN);
 signal(SIGFPE, handler);
 signal(SIGQUIT, SIG_DFL);

 execv("new prog", argv, NULL);
 // what happens if SIGINT, SIGFPE,
 // or SIGQUIT occur?
}

It’s generally unsafe to interrupt the execution of a process while it’s in the midst of
doing a system call. Thus, if a signal is sent to a process while it’s in a system call, it’s
usually not acted upon until just before the process returns from the system call back to
the user code. At this point the handler (if any) is executed. When the handler returns,
normal execution of the the user process resumes and it returns from the system call.

CS33 Intro to Computer Systems XXIII–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signals and System Calls

• What happens if a signal occurs while a
process is doing a system call?

– handler not invoked until just before system call
returns to user

» system call might terminate early because of signal
– system call completes
– signal handler is invoked
– user code resumed as if the system call has just

returned

Some system calls take a long time to execute. Such calls might be broken up into a
sequence of discrete steps, where it’s safe to check for and handle signals after each
step. For example, if a process is writing multiple gigabytes of data to a file in a single
call to write, the kernel code it executes will probably break this up into a number of
smaller writes, done one at a time. After each write completes, it checks to see if any
unmasked signals are pending.

CS33 Intro to Computer Systems XXIII–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signals and Lengthy System Calls

• Some system calls take a long time
– large I/O transfer

» multi-gigabyte read or write request probably done
as a sequence of smaller pieces

– a long wait is required
» a read from the keyboard requires waiting for

someone to type something
• If signal arrives in the midst of lengthy

system call, handler invoked:
– after current piece is completed
– after cancelling wait

What happens to the system call after the signal handling completes (assuming that the
process has not been terminated)? The system call effectively terminated when the
handler was called. When the handler returns, the system call either returns an
indication of how far it progressed before being interrupted by the signal (it would return
the number of bytes actually transferred, as opposed to the number of bytes requested)
or, if it was interrupted before anything actually happened, it returns an error indication
and sets errno to EINTR (meaning ”interrupted system call”).

CS33 Intro to Computer Systems XXIII–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Interrupted System Calls

• What if a signal is handled before the
system call completes?
– invoke handler, then return from system

call prematurely
• if one or more pieces were completed,

return total number of bytes transferred
• otherwise return “interrupted” error

CS33 Intro to Computer Systems XXIII–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Summary: Signals Occurring
During System Calls

• Either
– wait for system call to finish, then invoke handler
or
– stop system call early, then invoke handler

» EINTR error if nothing had been done yet
» return partial results if it was underway

The actions of some system calls are broken up into discrete steps. For example, if one
issues a system call to write a gigabyte of data to a file, the write will actually be split by
the kernel into a number of smaller writes. If the system call is interrupted by a signal
after the first component of the write has completed (but while there are still more to be
done), it would not make sense for the call to return an error code: such an error return
would convince the program that none of the write had completed and thus all should
be redone. Instead, the call completes successfully: it returns the number of bytes
actually transferred, the signal handler is invoked, and, on return from the signal
handler, the user program receives the successful return from the (shortened) system
call.

CS33 Intro to Computer Systems XXIII–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Interrupted System Calls: Lengthy
Case

char buf[BSIZE];
fillbuf(buf);
long remaining = BSIZE;
char *bptr = buf;
while (1){
 long num_xfrd = write(fd,
 bptr, remaining);
 if (num_xfrd == –1) {
 if (errno == EINTR) {
 // interrupted early
 continue;

 }
 perror("big trouble");
 exit(1);
 }

if (num_xfrd < remaining) {
 /* interrupted after the
 first step */
 remaining -= num_xfrd;
 bptr += num_xfrd;
 continue;
 }
 // success!
 break;
}

Let’s look at some of the typical uses for asynchronous signals. Perhaps the most
common is to force the termination of the process. When the user types control-C, the
program should terminate. There might be a handler for the signal, so that the program
can clean up and then terminate.

CS33 Intro to Computer Systems XXIII–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (1)

main() {
void handler(int);
signal(SIGINT, handler);

 ... /* long-running buggy code */

}

void handler(int sig) {
... /* clean up */
exit(1);

}

Here we are using a signal to send a request to a running program: when the user types
control-C, the program prints out its current state and then continues execution. If
synchronization is necessary so that the state is printed only when it is stable, it must
be provided by appropriate settings of the signal mask.

CS33 Intro to Computer Systems XXIII–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (2)

computation_state_t state;

main() {
 void handler(int);

 signal(SIGINT, handler);

 long_running_procedure();
}

long_running_procedure() {

 while (a_long_time) {
 update_state(&state);
 compute_more();
 }
}

void handler(int sig) {
 display(&state);
}

In this example, both the mainline code and the signal handler call myputs, which is
similar to the standard-I/O routine puts. It’s possible that the signal invoking the
handler occurs while the mainline code is in the midst of the call to myputs. Could this
be a problem?

CS33 Intro to Computer Systems XXIII–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (3)

main() {
 void handler(int);

 signal(SIGINT, handler);

 ... /* complicated program */

 myputs("important message\n");

 ... /* more program */

}

void handler(int sig) {

 ... /* deal with signal */

 myputs("equally important "
 "message\n");
}

Here’s the implementation of myputs, used in the previous slide. What it does is copy
the input string, one character at a time, into buf, which is of size BSIZE. Whenever a
newline character is encountered, the current contents of buf up to that point are
written to standard output, then subsequent characters are copied starting at the
beginning of buf. Similarly, if buf is filled, its contents are written to standard output
and subsequent characters are copied starting at the beginning of buf. Since buf is
global, characters not written out may be written after the next call to myput. Note that
printf (and other stdio routines) buffers output in a similar way.

The point of myputs is to minimize the number of calls to write, so that write is called
only when we have a complete line of text or when its buffer is full.

However, consider what happens if execution is in the middle of myputs when a signal
occurs, as in the previous slide. Among the numerous problem cases, suppose myput
is interrupted just after pos is set to -1 (if the code hadn’t had been interrupted, pos
would be soon incremented by 1). The signal handler now calls myputs, which copies
the first character of str into buf[pos], which, in this case, is buf[-1]. Thus the first
character “misses” the buffer. At best it simply won’t be printed, but there might well be
serious damage done to the program.

CS33 Intro to Computer Systems XXIII–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (4)

char buf[BSIZE];
int pos;

void myputs(char *str) {
 int len = strlen(str);
 for (int i=0; i<len; i++, pos++) {
 buf[pos] = str[i];
 if ((buf[pos] == '\n') || (pos == BSIZE-1)) {
 write(1, buf, pos+1);
 pos = -1;
 }
 }
}

To deal with the problem on the previous page, we must arrange that signal handlers
cannot destructively interfere with the operations of the mainline code. Unless we are
willing to work with signal masks (which can be expensive), this means we must restrict
what can be done inside a signal handler. Routines that, when called from a signal
handler, do not interfere with the operation of the mainline code, no matter what that
code is doing, are termed async-signal safe. The POSIX 1003.1 spec requires the
functions shown in the slide to be async-signal safe.

Note that POSIX specifies only those functions that must be async-signal safe.
Implementations may make other functions async-signal safe as well.

CS33 Intro to Computer Systems XXIII–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Async-Signal Safety

• Which library functions are safe to use within
signal handlers?

– abort
– accept
– access
– aio_error
– aio_return
– aio_suspend
– alarm
– bind
– cfgetispeed
– cfgetospeed
– cfsetispeed
– cfsetospeed
– chdir
– chmod
– chown
– clock_gettime
– close
– connect
– creat
– dup

– dup2
– execle
– execve
– _exit
– fchmod
– fchown
– fcntl
– fdatasync
– fork
– fpathconf
– fstat
– fsync
– ftruncate
– getegid
– geteuid
– getgid
– getgroups
– getpeername
– getpgrp
– getpid

– getppid
– getsockname
– getsockopt
– getuid
– kill
– link
– listen
– lseek
– lstat
– mkdir
– mkfifo
– open
– pathconf
– pause
– pipe
– poll
– posix_trace_event
– pselect
– raise
– read

– readlink
– recv
– recvfrom
– recvmsg
– rename
– rmdir
– select
– sem_post
– send
– sendmsg
– sendto
– setgid
– setpgid
– setsid
– setsockopt
– setuid
– shutdown
– sigaction
– sigaddset
– sigdelset

– sigemptyset
– sigfillset
– sigismember
– signal
– sigpause
– sigpending
– sigprocmask
– sigqueue
– sigsuspend
– sleep
– sockatmark
– socket
– socketpair
– stat
– symlink
– sysconf
– tcdrain
– tcflow
– tcflush
– tcgetattr

– tcgetpgrp
– tcsendbreak
– tcsetattr
– tcsetpgrp
– time
– timer_getoverrun
– timer_gettime
– timer_settime
– times
– umask
– uname
– unlink
– utime
– wait
– waitpid
– write

CS33 Intro to Computer Systems XXIII–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1

Printf is not listed as being async-signal safe.
Can it be implemented so that it is?

a) yes, but it would be so complicated, it’s not done
b) yes, it can be easily made async-signal safe
c) no, it’s inherently not async-signal safe

Most of the slides in this lecture are either from or adapted from slides provided by the
authors of the textbook “Computer Systems: A Programmer’s Perspective,” 2nd Edition
and are provided from the website of Carnegie-Mellon University, course 15-213, taught
by Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated
“Supplied by CMU” in the notes section of the slides.

CS33 Intro to Computer Systems XXIII–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Memory Hierarchy II

Supplied by CMU.

CS33 Intro to Computer Systems XXIII–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

What’s Inside A Disk Drive?
SpindleArm

Actuator

Platters

Electronics
(including a
processor
and memory!)SCSI

connector
Image courtesy of Seagate Technology

CS33 Intro to Computer Systems XXIII–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Disk Architecture

Track

Sector

Disk heads
(on top and bottom
of each platter) Cylinder

The slide lists the characteristics of a hypothetical disk drive.

CS33 Intro to Computer Systems XXIII–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Example Disk Drive

Rotation speed 10,000 RPM
Number of surfaces 8
Sector size 512 bytes
Sectors/track 500-1000; 750 average
Tracks/surface 100,000
Storage capacity 307.2 billion bytes
Average seek time 4 milliseconds
One-track seek time .2 milliseconds
Maximum seek time 10 milliseconds

Supplied by CMU.

CS33 Intro to Computer Systems XXIII–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Tracks divided into sectors

Disk Structure: Top View of Single Platter

Surface organized into tracks

Supplied by CMU.

CS33 Intro to Computer Systems XXIII–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Disk Access

Head in position above a track

Supplied by CMU.

CS33 Intro to Computer Systems XXIII–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Disk Access

Rotation is counter-clockwise

Supplied by CMU.

CS33 Intro to Computer Systems XXIII–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Disk Access – Read

About to read blue sector

Supplied by CMU.

CS33 Intro to Computer Systems XXIII–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Disk Access – Read

After BLUE
read

After reading blue sector

Supplied by CMU.

CS33 Intro to Computer Systems XXIII–31 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Disk Access – Read

After BLUE
read

Red request scheduled next

Supplied by CMU.

CS33 Intro to Computer Systems XXIII–32 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Disk Access – Seek

After BLUE
read

Seek for RED

Seek to red’s track

Supplied by CMU.

CS33 Intro to Computer Systems XXIII–33 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Disk Access – Rotational Latency

After BLUE
read

Seek for RED Rotational latency

Wait for red sector to rotate around

Supplied by CMU.

CS33 Intro to Computer Systems XXIII–34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Disk Access – Read

After BLUE
read

Seek for RED Rotational latency After RED read

Complete read of red

Supplied by CMU.

CS33 Intro to Computer Systems XXIII–35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Disk Access – Service Time
Components

After BLUE
read

Seek for RED Rotational latency After RED read

Data transfer Seek Rotational
latency

Data transfer

Supplied by CMU.

CS33 Intro to Computer Systems XXIII–36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Disk Access Time
• Average time to access some target sector approximated by :

– Taccess = Tavg seek + Tavg rotation + Tavg transfer
• Seek time (Tavg seek)

– time to position heads over cylinder containing target sector
– typical Tavg seek is 3–9 ms

• Rotational latency (Tavg rotation)
– time waiting for first bit of target sector to pass under r/w head
– typical rotation speed R = 7200 RPM
– Tavg rotation = 1/2 x 1/R x 60 sec/1 min

• Transfer time (Tavg transfer)
– time to read the bits in the target sector
– Tavg transfer = 1/R x 1/(avg # sectors/track) x 60 secs/1 min

Supplied by CMU.

CS33 Intro to Computer Systems XXIII–37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Disk Access Time Example
• Given:

– rotational rate = 7,200 RPM
– average seek time = 9 ms
– avg # sectors/track = 600

• Derived:
– Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms
– Tavg transfer = 60/7200 RPM x 1/600 sects/track x 1000 ms/sec = 0.014 ms
– Taccess = 9 ms + 4 ms + 0.014 ms

• Important points:
– access time dominated by seek time and rotational latency
– first bit in a sector is the most expensive, the rest are free
– SRAM access time is about 4 ns/doubleword, DRAM about 60 ns

» disk is about 40,000 times slower than SRAM
» 2,500 times slower than DRAM

Supplied by CMU.

CS33 Intro to Computer Systems XXIII–38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

I/O Bus

Main
memory

I/O
bridgeBus interface

ALU

Register file
CPU chip

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus Expansion slots for
other devices such
as network adapters.

Supplied by CMU.

CS33 Intro to Computer Systems XXIII–39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Reading a Disk Sector (1)

Main
memory

ALU

Register file
CPU chip

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus

Bus interface

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port
(address) associated with disk controller

Supplied by CMU.

CS33 Intro to Computer Systems XXIII–40 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Reading a Disk Sector (2)

Main
memory

ALU

Register file
CPU chip

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus

Bus interface

Disk controller reads the sector and
performs a direct memory access
(DMA) transfer into main memory

Supplied by CMU.

CS33 Intro to Computer Systems XXIII–41 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Reading a Disk Sector (3)

Main
memory

ALU

Register file
CPU chip

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus

Bus interface

When the DMA transfer completes,
the disk controller notifies the CPU
with an interrupt (i.e., asserts a
special “interrupt” pin on the CPU)

Supplied by CMU.

CS33 Intro to Computer Systems XXIII–42 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Solid-State Disks (SSDs)

• Pages: 512KB to 4KB; blocks: 32 to 128 pages
• Data read/written in units of pages
• Page can be written only after its block has been erased
• A block wears out after 100,000 repeated writes

Flash
translation layer

I/O bus

Page 0 Page 1 Page P-1…
Block 0

… Page 0 Page 1 Page P-1…
Block B-1

Flash memory

Solid State Disk (SSD)
Requests to read and
write logical disk blocks

Supplied by CMU.

CS33 Intro to Computer Systems XXIII–43 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

SSD Performance Characteristics

• Why are random writes so slow?
– erasing a block is slow (around 1 ms)
– modifying a page triggers a copy of all useful pages in the

block
» find a used block (new block) and erase it
» write the page into the new block
» copy other pages from old block to the new block

Sequential read tput 250 MB/s Sequential write tput 170 MB/s
Random read tput 140 MB/s Random write tput 14 MB/s
Random read access 30 us Random write access 300 us

Adapted from a slide supplied by CMU.

SSDs are on their way to supplanting disks.

CS33 Intro to Computer Systems XXIII–44 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

SSD Tradeoffs vs Rotating Disks

• Advantages
– no moving parts à faster, less power, more rugged

• Disadvantages
– have the potential to wear out

» mitigated by “wear-leveling logic” in flash translation
layer

» e.g. Intel X25 guarantees 1 petabyte (1015 bytes) of
random writes before they wear out

– in 2010, about 100 times more expensive per byte
– in 2017, about 6 times more expensive per byte
– in 2023, about 1-1.5 times more expensive per byte

• Applications
– smart phones, laptops, desktops

CS33 Intro to Computer Systems XXIII–45 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Reading a File on a Rotating Disk

• Suppose the data of a file are stored on
consecutive disk sectors on one track

– this is the best possible scenario for reading data
quickly

» single seek required
» single rotational delay
» all sectors read in a single scan

CS33 Intro to Computer Systems XXIII–46 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

We have two files on the same (rotating) disk. The first
file’s data resides in consecutive sectors on one track,
the second in consecutive sectors on another track. It
takes a total of t seconds to read all of the first file
then all of the second file.
Now suppose the files are read concurrently, perhaps
a sector of the first, then a sector of the second, then
the first, then the second, etc. Compared to reading
them sequentially, this will take

a) less time
b) about the same amount of time

(within a factor of 2)
c) much more time

CS33 Intro to Computer Systems XXIII–47 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 3

We have two files on the same solid-state disk. Each
file’s data resides in consecutive blocks. It takes a
total of t seconds to read all of the first file then all of
the second file.
Now suppose the files are read concurrently, perhaps
a block of the first, then a block of the second, then
the first, then the second, etc. Compared to reading
them sequentially, this will take

a) less time
b) about the same amount of time

(within a factor of 2)
c) much more time

Supplied by CMU.

CS33 Intro to Computer Systems XXIII–48 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Memory Hierarchies

• Some fundamental and enduring properties of
hardware and software:

– fast storage technologies cost more per byte, have
less capacity, and require more power (heat!)

– the gap between CPU and main memory speed is
widening

– well written programs tend to exhibit good locality
• These fundamental properties complement

each other beautifully
• They suggest an approach for organizing

memory and storage systems known as a
memory hierarchy

Supplied by CMU.

CS33 Intro to Computer Systems XXIII–49 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

An Example Memory Hierarchy

Registers

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

Remote secondary storage
(distributed file systems, cloud storage)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from L2 cache

CPU registers hold words retrieved
from L1 cache

L2 cache holds cache lines
retrieved from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

This analogy is from http://duartes.org/gustavo/blog/post/what-your-computer-does-
while-you-wait (definitely worth reading!).

CS33 Intro to Computer Systems XXIII–50 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Putting Things Into Perspective ...

• Reading from:
– ... the L1 cache is like grabbing a piece of paper

from your desk (3 seconds)
– ... the L2 cache is picking up a book from a nearby

shelf (14 seconds)
– ... main system memory (DRAM) is taking a 4-

minute walk down the hall to talk to a friend
– ... a hard drive is like leaving the building to roam

the earth for one year and three months

CS33 Intro to Computer Systems XXIII–51 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Disks Are Still Important

• Cheap
– cost/byte less than SSDs

• (fairly) Reliable
– data written to a disk is likely to be there next year

• Sometimes fast
– data in consecutive sectors on a track can be read

quickly
• Sometimes slow

– data in randomly scattered sectors takes a long
time to read

CS33 Intro to Computer Systems XXIII–52 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Abstraction to the Rescue

• Programs donʼt deal with sectors, tracks, and
cylinders

• Programs deal with files
– maze.c rather than an ordered collection of sectors
– OS provides the implementation

CS33 Intro to Computer Systems XXIII–53 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Implementation Problems

• Speed
– use the hierarchy

» copy files into RAM, copy back when done
– optimize layout

» put sectors of a file in consecutive locations
– use parallelism

» spread file over multiple disks
» read multiple sectors at once

CS33 Intro to Computer Systems XXIII–54 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Implementation Problems

• Reliability
– computer crashes

» what you thought was safely written to the file never
made it to the disk ⏤ it’s still in RAM, which is lost

» worse yet, some parts made it back to disk, some
didn’t

• you don’t know which is which
• on-disk data structures might be totally trashed

– disk crashes
» you had backed it up … yesterday

– you screw up
» you accidentally delete the entire directory

containing your shell 1 implementation

CS33 Intro to Computer Systems XXIII–55 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Implementation Problems

• Reliability solutions
– computer crashes

» transaction-oriented file systems
» on-disk data structures always in well defined states

– disk crashes
» files stored redundantly on multiple disks

– you screw up
» file system automatically keeps "snapshots" of

previous versions of files

