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CS 33
Signals Part 3



A process may wait only for its children to terminate (this excludes grandchildren).
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Reaping: Zombie Elimination

• Shell must call waitpid on each child
– easy for a foreground child
– what about background?

pid_t waitpid(pid_t pid, int *status, int options);
– pid values:

< −1 any child process whose process group is |pid|
−1 any child process
0  any child process whose process group is that of caller
> 0 child process whose ID is equal to pid

− wait(&status) is equivalent to waitpid(-1, &status, 0)



If a process is found, waitpid returns the process ID of the process that has been 
suspended or resumed.
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(continued)

pid_t waitpid(pid_t pid, int *status, int options);
– options are some combination of the following

» WNOHANG
• return immediately if no child has exited (returns 0)

» WUNTRACED
• also return if a child has been stopped (suspended)

» WCONTINUED
• also return if a child has been continued (resumed)
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When to Call waitpid

• Shell reports status only when it is about to 
display its prompt

– thus sufficient to check on background jobs just 
before displaying prompt



These are macros that can be applied to the status output argument of waitpid. Note 
that “terminated normally” means that the process terminated by calling exit. 
Otherwise, it was terminated because it received a signal, which it neither ignored nor 
had a handler for, whose default action was termination.
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waitpid status

• WIFEXITED(*status): 1 if the process terminated normally 
and 0 otherwise

• WEXITSTATUS(*status): argument to exit
• WIFSIGNALED(*status): 1 if the process was terminated 

by a signal and 0 otherwise
• WTERMSIG(*status): the signal which terminated the 

process if it terminated by a signal
• WIFSTOPPED(*status): 1 if the process was stopped by a 

signal
• WSTOPSIG(*status): the signal which stopped the 

process if it was stopped by a signal
• WIFCONTINUED(*status): 1 if the process was resumed 

by SIGCONT and 0 otherwise



This code might be executed by a shell just before it displays its prompt. The loop 
iterates through all child processes that have either terminated or stopped. The 
WNOHANG option causes waitpid to return 0 (rather than waiting) if the caller has 
extant children, but there are no more that have either terminated or stopped. If the 
caller has no children, then waitpid returns -1.
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Example (in Shell)
int wret, wstatus;
while ((wret = waitpid(-1, &wstatus, WNOHANG|WUNTRACED)) > 0){
  // examine all children who’ve terminated or stopped
  if (WIFEXITED(wstatus)) {
    // terminated normally
    ...
  }
  if (WIFSIGNALED(wstatus)) {
    // terminated by a signal
    ...
  }
  if (WIFSTOPPED(wstatus)) {
    // stopped
    ...
  }
}



The init process is the common ancestor of all other processes in the system. It 
continues to exist while the system is running. It starts things going soon after the 
system is booted by forking child processes that exec the login code. These login 
processes then exec the shell. Note that, since only the parent may wait for a child’s 
termination, only parent-child relationships are maintained between processes.
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Process Relationships (1)

Init

Login 1 Login 2 Login 3

cmd cmd cmd cmd cmd

Sub proc. Sub proc.



When a process terminates, all of its children are inherited by the init process, process 
number 1.
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Process Relationships (2)

Init

Login 1 Login 2 Login 3

cmd cmd cmd cmd cmd

Sub proc. Sub proc.
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Process Relationships (3)

Init

Login 1 Login 2 Login 3

cmd cmd cmd cmd cmd

Sub proc. Sub proc.



As makes sense, the signal-handling state of the parent is reproduced in the child.

What also makes sense is that, if a signal has been given a handler, then, after an exec, 
since the handler no longer exists, the signal reverts to default actions.

What at first glance makes less sense is that ignored signals stay ignored after an exec 
(of course, signals with default action stay that way after the exec). The intent is that 
this allows one to run a program protected from certain signals.
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Signals, Fork, and Exec

// set up signal handlers ...
if (fork() == 0) {
   // what happens if child gets signal?
   ...
   signal(SIGINT, SIG_IGN);
   signal(SIGFPE, handler);
   signal(SIGQUIT, SIG_DFL);

   execv("new prog", argv, NULL);
   // what happens if SIGINT, SIGFPE,
   // or SIGQUIT occur?
}



It’s generally unsafe to interrupt the execution of a process while it’s in the midst of 
doing a system call. Thus, if a signal is sent to a process while it’s in a system call, it’s 
usually not acted upon until just before the process returns from the system call back to 
the user code. At this point the handler (if any) is executed. When the handler returns, 
normal execution of the the user process resumes and it returns from the system call.
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Signals and System Calls

• What happens if a signal occurs while a 
process is doing a system call?

– handler not invoked until just before system call 
returns to user

» system call might terminate early because of signal
– system call completes
– signal handler is invoked
– user code resumed as if the system call has just 

returned



Some system calls take a long time to execute. Such calls might be broken up into a 
sequence of discrete steps, where it’s safe to check for and handle signals after each 
step. For example, if a process is writing multiple gigabytes of data to a file in a single 
call to write, the kernel code it executes will probably break this up into a number of 
smaller writes, done one at a time. After each write completes, it checks to see if any 
unmasked signals are pending.
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Signals and Lengthy System Calls

• Some system calls take a long time
– large I/O transfer

» multi-gigabyte read or write request probably done 
as a sequence of smaller pieces

– a long wait is required
» a read from the keyboard requires waiting for 

someone to type something
• If signal arrives in the midst of lengthy 

system call, handler invoked:
– after current piece is completed
– after cancelling wait



What happens to the system call after the signal handling completes (assuming that the 
process has not been terminated)? The system call effectively terminated when the 
handler was called. When the handler returns, the system call either returns an 
indication of how far it progressed before being interrupted by the signal (it would return 
the number of bytes actually transferred, as opposed to the number of bytes requested) 
or, if it was interrupted before anything actually happened, it returns an error indication 
and sets errno to EINTR (meaning ”interrupted system call”).
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Interrupted System Calls

• What if a signal is handled before the 
system call completes?
– invoke handler, then return from system 

call prematurely
• if one or more pieces were completed, 

return total number of bytes transferred
• otherwise return “interrupted” error



CS33 Intro to Computer Systems XXIII–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Summary: Signals Occurring 
During System Calls

• Either
– wait for system call to finish, then invoke handler
or
– stop system call early, then invoke handler

» EINTR error if nothing had been done yet
» return partial results if it was underway



The actions of some system calls are broken up into discrete steps. For example, if one 
issues a system call to write a gigabyte of data to a file, the write will actually be split by 
the kernel into a number of smaller writes. If the system call is interrupted by a signal 
after the first component of the write has completed (but while there are still more to be 
done), it would not make sense for the call to return an error code: such an error return 
would convince the program that none of the write had completed and thus all should 
be redone. Instead, the call completes successfully: it returns the number of bytes 
actually transferred, the signal handler is invoked, and, on return from the signal 
handler, the user program receives the successful return from the (shortened) system 
call.
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Interrupted System Calls: Lengthy 
Case

char buf[BSIZE];
fillbuf(buf);
long remaining = BSIZE;
char *bptr = buf;
while (1){
  long num_xfrd = write(fd,
      bptr, remaining);
  if (num_xfrd == –1) {
    if (errno == EINTR) {
    // interrupted early
    continue;

    }
    perror("big trouble");
    exit(1);
  }

if (num_xfrd < remaining) {
    /* interrupted after the
       first step */
    remaining -= num_xfrd;
    bptr += num_xfrd;
    continue;
  }
  // success!
  break;
}



Let’s look at some of the typical uses for asynchronous signals. Perhaps the most 
common is to force the termination of the process. When the user types control-C, the 
program should terminate. There might be a handler for the signal, so that the program 
can clean up and then terminate.
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Asynchronous Signals (1)

main( ) {
void handler(int);
signal(SIGINT, handler);

  ...  /* long-running buggy code */

}

void handler(int sig) {
...  /* clean up */
exit(1);

}



Here we are using a signal to send a request to a running program: when the user types 
control-C, the program prints out its current state and then continues execution. If 
synchronization is necessary so that the state is printed only when it is stable, it must 
be provided by appropriate settings of the signal mask.
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Asynchronous Signals (2)

computation_state_t  state;

main( ) {
 void handler(int);

 signal(SIGINT, handler);

 long_running_procedure( );
}

long_running_procedure( ) {

 while (a_long_time) {
  update_state(&state);
  compute_more( );
 }
}

void handler(int sig) {
 display(&state);
}



In this example, both the mainline code and the signal handler call myputs, which is 
similar to the standard-I/O routine puts. It’s possible that the signal invoking the 
handler occurs while the mainline code is in the midst of the call to myputs. Could this 
be a problem?
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Asynchronous Signals (3)

main( ) {
 void handler(int);

 signal(SIGINT, handler);

 ... /* complicated program */

 myputs("important message\n");

 ... /* more program */

}

void handler(int sig) {

 ... /* deal with signal */

 myputs("equally important "
     "message\n");
}



Here’s the implementation of myputs, used in the previous slide. What it does is copy 
the input string, one character at a time, into buf, which is of size BSIZE. Whenever a 
newline character is encountered, the current contents of buf up to that point are 
written to standard output, then subsequent characters are copied starting at the 
beginning of buf. Similarly, if buf is filled, its contents are written to standard output 
and subsequent characters are copied starting at the beginning of buf. Since buf is 
global, characters not written out may be written after the next call to myput. Note that 
printf (and other stdio routines) buffers output in a similar way.

The point of myputs is to minimize the number of calls to write, so that write is called 
only when we have a complete line of text or when its buffer is full.

However, consider what happens if execution is in the middle of myputs when a signal 
occurs, as in the previous slide. Among the numerous problem cases, suppose myput 
is interrupted just after pos is set to -1 (if the code hadn’t had been interrupted, pos 
would be soon incremented by 1). The signal handler now calls myputs, which copies 
the first character of str into buf[pos], which, in this case, is buf[-1]. Thus the first 
character “misses” the buffer. At best it simply won’t be printed, but there might well be 
serious damage done to the program.
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Asynchronous Signals (4)

char buf[BSIZE];
int pos;

void myputs(char *str) {
  int len = strlen(str);
  for (int i=0; i<len; i++, pos++) {
    buf[pos] = str[i];
    if ((buf[pos] == '\n') || (pos == BSIZE-1)) {
      write(1, buf, pos+1);
      pos = -1;
    }
  }
}



To deal with the problem on the previous page, we must arrange that signal handlers 
cannot destructively interfere with the operations of the mainline code. Unless we are 
willing to work with signal masks (which can be expensive), this means we must restrict 
what can be done inside a signal handler. Routines that, when called from a signal 
handler, do not interfere with the operation of the mainline code, no matter what that 
code is doing, are termed async-signal safe. The POSIX 1003.1 spec requires the 
functions shown in the slide to be async-signal safe.

Note that POSIX specifies only those functions that must be async-signal safe. 
Implementations may make other functions async-signal safe as well.
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Async-Signal Safety

• Which library functions are safe to use within 
signal handlers?

– abort
– accept
– access
– aio_error
– aio_return
– aio_suspend
– alarm
– bind
– cfgetispeed
– cfgetospeed
– cfsetispeed
– cfsetospeed
– chdir
– chmod
– chown
– clock_gettime
– close
– connect
– creat
– dup

– dup2
– execle
– execve
– _exit
– fchmod
– fchown
– fcntl
– fdatasync
– fork
– fpathconf
– fstat
– fsync
– ftruncate
– getegid
– geteuid
– getgid
– getgroups
– getpeername
– getpgrp
– getpid

– getppid
– getsockname
– getsockopt
– getuid
– kill
– link
– listen
– lseek
– lstat
– mkdir
– mkfifo
– open
– pathconf
– pause
– pipe
– poll
– posix_trace_event
– pselect
– raise
– read

– readlink
– recv
– recvfrom
– recvmsg
– rename
– rmdir
– select
– sem_post
– send
– sendmsg
– sendto
– setgid
– setpgid
– setsid
– setsockopt
– setuid
– shutdown
– sigaction
– sigaddset
– sigdelset

– sigemptyset
– sigfillset
– sigismember
– signal
– sigpause
– sigpending
– sigprocmask
– sigqueue
– sigsuspend
– sleep
– sockatmark
– socket
– socketpair
– stat
– symlink
– sysconf
– tcdrain
– tcflow
– tcflush
– tcgetattr

– tcgetpgrp
– tcsendbreak
– tcsetattr
– tcsetpgrp
– time
– timer_getoverrun
– timer_gettime
– timer_settime
– times
– umask
– uname
– unlink
– utime
– wait
– waitpid
– write
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Quiz 1

Printf is not listed as being async-signal safe. 
Can it be implemented so that it is?

a) yes, but it would be so complicated, it’s not done
b) yes, it can be easily made async-signal safe
c) no, it’s inherently not async-signal safe



Most of the slides in this lecture are either from or adapted from slides provided by the 
authors of the textbook “Computer Systems: A Programmer’s Perspective,” 2nd Edition 
and are provided from the website of Carnegie-Mellon University, course 15-213, taught 
by Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated 
“Supplied by CMU” in the notes section of the slides.
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CS 33
Memory Hierarchy II



Supplied by CMU.
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What’s Inside A Disk Drive?
SpindleArm

Actuator

Platters

Electronics
(including a 
processor 
and memory!)SCSI

connector
Image courtesy of Seagate Technology
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Disk Architecture

Track

Sector

Disk heads
(on top and bottom
of each platter) Cylinder



The slide lists the characteristics of a hypothetical disk drive.
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Example Disk Drive

Rotation speed 10,000 RPM 
Number of surfaces 8 
Sector size 512 bytes 
Sectors/track 500-1000; 750 average 
Tracks/surface 100,000 
Storage capacity 307.2 billion bytes 
Average seek time 4 milliseconds 
One-track seek time .2 milliseconds 
Maximum seek time 10 milliseconds 



Supplied by CMU.
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Tracks divided into sectors

Disk Structure: Top View of Single Platter

Surface organized into tracks



Supplied by CMU.
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Disk Access

Head in position above a track



Supplied by CMU.
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Disk Access

Rotation is counter-clockwise



Supplied by CMU.
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Disk Access – Read

About to read blue sector



Supplied by CMU.
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Disk Access – Read

After BLUE 
read

After reading blue sector



Supplied by CMU.
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Disk Access – Read

After BLUE 
read

Red request scheduled next



Supplied by CMU.
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Disk Access – Seek

After BLUE 
read

Seek for RED

Seek to red’s track



Supplied by CMU.
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Disk Access – Rotational Latency

After BLUE 
read

Seek for RED Rotational latency

Wait for red sector to rotate around



Supplied by CMU.
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Disk Access – Read

After BLUE 
read

Seek for RED Rotational latency After RED read

Complete read of red



Supplied by CMU.
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Disk Access – Service Time 
Components

After BLUE 
read

Seek for RED Rotational latency After RED read

Data transfer Seek Rotational 
latency

Data transfer



Supplied by CMU.
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Disk Access Time
• Average time to access some target sector approximated by :

– Taccess  =  Tavg seek +  Tavg rotation + Tavg transfer 
• Seek time (Tavg seek)

– time to position heads over cylinder containing target sector
– typical  Tavg seek is 3–9 ms

• Rotational latency (Tavg rotation)
– time waiting for first bit of target sector to pass under r/w head
– typical rotation speed R = 7200 RPM
– Tavg rotation = 1/2 x 1/R x 60 sec/1 min

• Transfer time (Tavg transfer) 
– time to read the bits in the target sector
– Tavg transfer = 1/R x 1/(avg # sectors/track) x 60 secs/1 min



Supplied by CMU.
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Disk Access Time Example
• Given:

– rotational rate = 7,200 RPM
– average seek time = 9 ms
– avg # sectors/track = 600

• Derived:
– Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms
– Tavg transfer = 60/7200 RPM x 1/600 sects/track x 1000 ms/sec = 0.014 ms
– Taccess  = 9 ms + 4 ms + 0.014 ms

• Important points:
– access time dominated by seek time and rotational latency
– first bit in a sector is the most expensive, the rest are free
– SRAM access time is about 4 ns/doubleword, DRAM about  60 ns

» disk is about 40,000 times slower than SRAM
» 2,500 times slower than DRAM



Supplied by CMU.
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I/O Bus

Main
memory

I/O 
bridgeBus interface

ALU

Register file
CPU chip

System bus Memory bus

Disk 
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus Expansion slots for
other devices such
as network adapters.



Supplied by CMU.
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Reading a Disk Sector (1)

Main
memory

ALU

Register file
CPU chip

Disk 
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus

Bus interface

CPU initiates a disk read by writing a 
command, logical block number, and 
destination memory address to a port 
(address) associated with disk controller



Supplied by CMU.
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Reading a Disk Sector (2)

Main
memory

ALU

Register file
CPU chip

Disk 
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus

Bus interface

Disk controller reads the sector and 
performs a direct memory access 
(DMA) transfer into main memory



Supplied by CMU.
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Reading a Disk Sector (3)

Main
memory

ALU

Register file
CPU chip

Disk 
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus

Bus interface

When the DMA transfer completes, 
the disk controller notifies the CPU 
with an interrupt (i.e., asserts a 
special “interrupt” pin on the CPU)



Supplied by CMU.
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Solid-State Disks (SSDs)

• Pages: 512KB to 4KB; blocks: 32 to 128 pages
• Data read/written in units of pages 
• Page can be written only after its block has been erased
• A block wears out after 100,000 repeated writes

Flash 
translation layer

I/O bus

Page 0 Page 1 Page P-1…
Block 0

… Page 0 Page 1 Page P-1…
Block  B-1

Flash memory

Solid State Disk (SSD)
Requests to read and 
write logical disk blocks



Supplied by CMU.

CS33 Intro to Computer Systems XXIII–43 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

SSD Performance Characteristics
 

• Why are random writes so slow?
– erasing a block is slow (around 1 ms)
– modifying a page triggers a copy of all useful pages in the 

block
» find a used block (new block) and erase it
» write the page into the new block
» copy other pages from old block to the new block

Sequential read tput 250 MB/s Sequential write tput 170 MB/s
Random read tput 140 MB/s Random write tput 14 MB/s
Random read access 30 us  Random write access 300 us



Adapted from a slide supplied by CMU.

SSDs are on their way to supplanting disks.
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SSD Tradeoffs vs Rotating Disks

• Advantages 
– no moving parts à faster, less power, more rugged

• Disadvantages
– have the potential to wear out 

» mitigated by “wear-leveling logic” in flash translation 
layer

» e.g. Intel X25 guarantees 1 petabyte (1015 bytes) of 
random writes before they wear out

– in 2010, about 100 times more expensive per byte
– in 2017, about 6 times more expensive per byte
– in 2023, about 1-1.5 times more expensive per byte

• Applications
– smart phones, laptops, desktops
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Reading a File on a Rotating Disk

• Suppose the data of a file are stored on 
consecutive disk sectors on one track

– this is the best possible scenario for reading data 
quickly

» single seek required
» single rotational delay
» all sectors read in a single scan
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Quiz 2

We have two files on the same (rotating) disk. The first 
file’s data resides in consecutive sectors on one track, 
the second in consecutive sectors on another track. It 
takes a total of t seconds to read all of the first file 
then all of the second file.
Now suppose the files are read concurrently, perhaps 
a sector of the first, then a sector of the second, then 
the first, then the second, etc. Compared to reading 
them sequentially, this will take

a) less time
b) about the same amount of time

(within a factor of 2)
c) much more time
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Quiz 3

We have two files on the same solid-state disk. Each 
file’s data resides in consecutive blocks. It takes a 
total of t seconds to read all of the first file then all of 
the second file.
Now suppose the files are read concurrently, perhaps 
a block of the first, then a block of the second, then 
the first, then the second, etc. Compared to reading 
them sequentially, this will take

a) less time
b) about the same amount of time

(within a factor of 2)
c) much more time



Supplied by CMU.
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Memory Hierarchies

• Some fundamental and enduring properties of 
hardware and software:

– fast storage technologies cost more per byte, have 
less capacity, and require more power (heat!)

– the gap between CPU and main memory speed is 
widening

– well written programs tend to exhibit good locality
• These fundamental properties complement 

each other beautifully
• They suggest an approach for organizing 

memory and storage systems known as a 
memory hierarchy



Supplied by CMU.
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An Example Memory Hierarchy

Registers

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 
cheaper 
per byte

Remote secondary storage
(distributed file systems, cloud storage)

Local disks hold files 
retrieved from disks on 
remote network servers

Main memory holds disk blocks 
retrieved from local disks

L2 cache
(SRAM)

L1 cache holds cache lines retrieved 
from L2 cache

CPU registers hold words retrieved 
from L1 cache

L2 cache holds cache lines 
retrieved from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte



This analogy is from http://duartes.org/gustavo/blog/post/what-your-computer-does-
while-you-wait (definitely worth reading!).
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Putting Things Into Perspective ...

• Reading from:
– ... the L1 cache is like grabbing a piece of paper 

from your desk (3 seconds)
– ... the L2 cache is picking up a book from a nearby 

shelf (14 seconds)
– ... main system memory (DRAM) is taking a 4-

minute walk down the hall to talk to a friend
– ... a hard drive is like leaving the building to roam 

the earth for one year and three months
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Disks Are Still Important

• Cheap
– cost/byte less than SSDs

• (fairly) Reliable
– data written to a disk is likely to be there next year

• Sometimes fast
– data in consecutive sectors on a track can be read 

quickly
• Sometimes slow

– data in randomly scattered sectors takes a long 
time to read
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Abstraction to the Rescue

• Programs donʼt deal with sectors, tracks, and 
cylinders

• Programs deal with files
– maze.c rather than an ordered collection of sectors
– OS provides the implementation
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Implementation Problems

• Speed
– use the hierarchy

» copy files into RAM, copy back when done
– optimize layout

» put sectors of a file in consecutive locations
– use parallelism

» spread file over multiple disks
» read multiple sectors at once
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Implementation Problems

• Reliability
– computer crashes

» what you thought was safely written to the file never 
made it to the disk ⏤ it’s still in RAM, which is lost

» worse yet, some parts made it back to disk, some 
didn’t

• you don’t know which is which
• on-disk data structures might be totally trashed

– disk crashes
» you had backed it up … yesterday

– you screw up
» you accidentally delete the entire directory 

containing your shell 1 implementation
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Implementation Problems

• Reliability solutions
– computer crashes

» transaction-oriented file systems
» on-disk data structures always in well defined states

– disk crashes
» files stored redundantly on multiple disks

– you screw up
» file system automatically keeps "snapshots" of 

previous versions of files


