
CS33 Intro to Computer Systems XXV–1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Intro to Storage Allocation

CS33 Intro to Computer Systems XXV–2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

A Queue

typedef struct list_element {
 int value;
 struct list_element *next;
} list_element_t;

list_element_t *head, *tail;

67

17

2

14

head

tail

CS33 Intro to Computer Systems XXV–3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Enqueue
int enqueue(int value) {
 list_element_t *newle
 = (list_element_t *)malloc(sizeof(list_element_t));
 if (newle == 0)
 return 0; // can't do it: out of memory
 newle->value = value;
 newle->next = 0;
 if (head == 0) {
 // list was empty
 assert(tail == 0);
 head = newle;
 } else {
 tail->next = newle;
 }
 tail = newle;
 return 1;
}

CS33 Intro to Computer Systems XXV–4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Dequeue
int dequeue(int *value) {
 list_element_t *first;
 if (head == 0) {
 // list is empty
 return 0;
 }
 *value = head->value;
 first = head;
 head = head->next;
 if (tail == first) {
 assert(head == 0);
 tail = 0;
 }
 return 1;
}

What’s wrong with
this code???

CS33 Intro to Computer Systems XXV–5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Storage Leaks

int main() {
 while(1)

 if (malloc(sizeof(list_element_t)) == 0)
 break;
 return 1;
}

For how long will this program
run before terminating?

CS33 Intro to Computer Systems XXV–6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Dequeue, Fixed
int dequeue(int *value) {
 list_element_t *first;
 if (head == 0) {
 // list is empty
 return 0;
 }
 *value = head->value;
 first = head;
 head = head->next;
 if (tail == first)
 assert(head == 0);
 tail = 0;
 }
 free(first);
 return 1;
}

CS33 Intro to Computer Systems XXV–7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1
int enqueue(int value) {
 list_element_t *newle
 = (list_element_t *)malloc(sizeof(list_element_t));
 if (newle == 0)
 return 0;
 newle->value = value;
 newle->next = 0;
 if (head == 0) {
 // list was empty
 assert(tail == 0);
 head = newle;
 } else {
 tail->next = newle;
 }
 tail = newle;
 free(newle); // saves us the bother of freeing it later
 return 1;
}

This version of enqueue makes
unnecessary the call to free in
dequeue.

a) It works well.
b) It fails occasionally.
c) It hardly ever works.
d) It never works.

CS33 Intro to Computer Systems XXV–8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

malloc and free

void *malloc(size_t size)
– allocate size bytes of storage and return a pointer

to it
– returns 0 (NULL) if the requested storage isn’t

available
void free(void *ptr)

– free the storage pointed to by ptr
– ptr must have previously been returned by malloc

(or other storage-allocation functions — calloc and
realloc)

CS33 Intro to Computer Systems XXV–9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

realloc

void *realloc(void *ptr, size_t size)
– change the size of the storage pointed to by ptr
– the contents, up to the minimum of the old size and

new size, will not be changed
– ptr must have been returned by a previous call to

malloc, realloc, or calloc
– it may be necessary to allocate a completely new

area and copy from the old to the new
» thus the return value may be different from ptr
» if copying is done the old area is freed

– returns 0 if the operation cannot be done

CS33 Intro to Computer Systems XXV–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Get (contiguous) Input (1)
char *getinput() {
 int alloc_size = 4; // start small
 int read_size = 4; // max number of bytes to read
 int next_read = 0; // index in buf of next read
 int bytes_read; // number of bytes read
 char *buf = (char *)malloc(alloc_size);
 char *newbuf;

 if (buf == 0) {
 // no memory
 return 0;
 }

CS33 Intro to Computer Systems XXV–11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Get (contiguous) Input (2)
while (1) {

 if ((bytes_read
 = read(0, buf+next_read, read_size)) == -1) {
 perror("getinput");

 return 0;
 }

 if (bytes_read == 0) {
 // eof

 break;
 }
 if ((buf+next_read)[bytes_read-1] == '\n') {
 // end of line

 break;
 }

CS33 Intro to Computer Systems XXV–12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Get (contiguous) Input (3)
next_read += read_size;

 read_size = alloc_size;

 alloc_size *= 2;
 newbuf = (char *)realloc(buf, alloc_size);
 if (newbuf == 0) {
 // realloc failed: not enough memory.

 // Free the storage allocated previously and report
 // failure.

 free(buf);

 return 0;
 }

 buf = newbuf;

 }

CS33 Intro to Computer Systems XXV–13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Get (contiguous) Input (4)
// reduce buffer size to the minimum necessary

 newbuf = (char *)realloc(buf,
 alloc_size - (read_size - bytes_read));
 if (newbuf == 0) {
 // couldn't allocate smaller buf

 return buf;
 }
 return newbuf;
}

CS33 Intro to Computer Systems XXV–14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Some Common Memory-
Related Errors

CS33 Intro to Computer Systems XXV–15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Dereferencing Bad Pointers

• The classic scanf bug

int val;

...

scanf("%d", val);

CS33 Intro to Computer Systems XXV–16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Reading Uninitialized Memory

• Assuming that dynamically allocated data is
initialized to zero

/* return y = Ax */
int *matvec(int A[][N], int x[]) {

int *y = (int *)malloc(N*sizeof(int));
int i, j;

for (i=0; i<N; i++)
for (j=0; j<N; j++)

y[i] += A[i][j]*x[j];
return y;

}

CS33 Intro to Computer Systems XXV–17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Overwriting Memory

• Allocating the (possibly) wrong-sized object

// set up p so it is an array of
// int *’s, allocated dynamically
int **p;

p = (int **)malloc(N*sizeof(int));

for (i=0; i<N; i++) {
p[i] = (int *)malloc(M*sizeof(int));

}

p[0]
p[1]
p[2]
p[3]
p[4]
p[5]
p[6]
p[7]

CS33 Intro to Computer Systems XXV–18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Overwriting Memory

• Not checking the max string size

• Basis for classic buffer overflow attacks

char s[8];
int i;

gets(s); /* reads “123456789” from stdin */

CS33 Intro to Computer Systems XXV–19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Going Too Far

• Misunderstanding pointer arithmetic

int *search(int p[], int val) {

while (*p && *p != val)
p += sizeof(int);

return p;
}

CS33 Intro to Computer Systems XXV–20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Referencing Nonexistent Variables

• Forgetting that local variables disappear
when a function returns

int *foo () {
int val;

return &val;
}

CS33 Intro to Computer Systems XXV–21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Freeing Blocks Multiple Times

x = (int *)malloc(N*sizeof(int));
<manipulate x>

free(x);

y = (int *)malloc(M*sizeof(int));
<manipulate y>

free(x);

CS33 Intro to Computer Systems XXV–22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Referencing Freed Blocks

x = (int *)malloc(N*sizeof(int));
<manipulate x>

free(x);
...

y = (int *)malloc(M*sizeof(int));
for (i=0; i<M; i++)

y[i] = x[i]++;

CS33 Intro to Computer Systems XXV–23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Failing to Free Blocks (Memory
Leaks)

foo() {
int *x = (int *)malloc(N*sizeof(int));
Use(x, N);
return;

}

CS33 Intro to Computer Systems XXV–24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Failing to Free Blocks (Memory Leaks)

• Freeing only part of a data structure
struct list {

int val;
struct list *next;

};

foo() {
struct list *head = malloc(sizeof(struct list));
head->val = 0;
head->next = NULL;
<allocate and manipulate the rest of the list>
...

free(head);
return;

}

CS33 Intro to Computer Systems XXV–25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Total Confusion

foo() {
char *str;
str = (char *)malloc(1024);
...
str = "";
...
strcat(str, "c");
...
return;

}

CS33 Intro to Computer Systems XXV–26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

It Works, But ...

• Using a hammer where a feather would do ...

hammer() {
int *x = (int *)malloc(1024*sizeof(int));
Use(x, 1024);
free(x);
return;

}

feather() {
int x[1024];
Use(x, 1024);
return;

}

CS33 Intro to Computer Systems XXV–27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2

• Will this work?
a) always
b) usually
c) never

typedef struct
TwoParts {

int part1[120];
float part2[200];

} TwoParts_t;

void func() {
TwoParts_t *X;
X = malloc(sizeof(TwoParts_t));
UseX1(X->part1);
free(&X->part1);
UseX2(X->part2);
free(&X->part2);

}

CS33 Intro to Computer Systems XXV–28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

The Unix Address Space

text

data

bss
dynamic

stack

program
break

CS33 Intro to Computer Systems XXV–29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

sbrk System Call

void *sbrk(intptr_t increment)
– moves the program break by an amount equal to

increment
– returns the previous program break
– intptr_t is typedef’d to be a long

CS33 Intro to Computer Systems XXV–30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Managing Dynamic Storage

• Strategy
– get a “chunk” of memory from the OS using sbrk

» create pool of available storage, aka the “heap”
– malloc, calloc, realloc, and free use this storage if

possible
» they manage the heap

– if not possible, get more storage from OS
» heap is made larger (by calling sbrk)

• Important note:
– when process terminates, all storage is given back

to the system
» all memory-related sins are forgotten!

CS33 Intro to Computer Systems XXV–31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Malloc and Free

x = malloc(40);
y = malloc(60);
z = malloc(30);
free(y);

CS33 Intro to Computer Systems XXV–32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Malloc and Free

x = malloc(40);
y = malloc(60);
z = malloc(30);
free(y);

w = malloc(60);

?

?
• How do we keep track of

where free space is?
• How do we choose which

to use?

CS33 Intro to Computer Systems XXV–33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Managing Free Space

• Two possibilities
1) donʼt worry about it: memory is cheap and

plentiful ⏤ simply call sbrk when a new block is
needed

2) link together the free blocks

CS33 Intro to Computer Systems XXV–34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Finding the Right Free Block

Free (28 bytes)

Allocated

Free (40 bytes)

Allocated

Free (32 bytes)

Allocated

malloc(24)

• Search strategies
• first fit
• best fit

CS33 Intro to Computer Systems XXV–35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

A Problem

• A malloc request is for a block of 32 bytes
• The block found on the free list is 1024 bytes

long
• Should malloc return a pointer to the entire

1024-byte block?

CS33 Intro to Computer Systems XXV–36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Splitting

Free (1024 bytes) Free (992 bytes)

Allocated

CS33 Intro to Computer Systems XXV–37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Another Problem

Free (28 bytes)

Allocated

Free (40 bytes)

Allocated

Free (32 bytes)

Allocated

x

ç√

Free (28 bytes)

Free (16 bytes)

Free (40 bytes)

Allocated

Free (32 bytes)

Allocated

free(x)

CS33 Intro to Computer Systems XXV–38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing

ç√

Free (28 bytes)

Free (16 bytes)

Free (40 bytes)

Allocated

Free (32 bytes)

Allocated

coalesce

Allocated

Allocated

Free (32 bytes)

Free (84 bytes)

CS33 Intro to Computer Systems XXV–39 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 3
1200

1300

We have two free blocks of memory, of
sizes 1300 and 1200 (appearing in that
order). There are three successive
requests to malloc for allocations of 1000,
1100, and 250 bytes. Which approach does
best? (Hint: one of the two fails the last
request.)

a) first fit
b) best fit

CS33 Intro to Computer Systems XXV–40 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Allocation

1200

300

200

1300

Stuck!

300

100

50

100

200

200

1000 bytes

1100 bytes

250 bytes

First Fit Best Fit

1200

1300

CS33 Intro to Computer Systems XXV–41 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Some Observations

• Best fit
– perhaps leaves behind chunks that are too small to

be of use
– requires linear time (in size of free list) for malloc

• First fit
– small chunks congregate at beginning of free list
– upper bound of linear time for malloc, but often

much less

CS33 Intro to Computer Systems XXV–42 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Fragmentation

• Fragmentation refers to the wastage of
memory due to our allocation policy

• Two sorts
– external fragmentation
– internal fragmentation

CS33 Intro to Computer Systems XXV–43 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

External Fragmentation

Free (60 bytes)

Allocated
Free (8 bytes)

Allocated
Free (8 bytes)

Allocated

Free (8 bytes)

Wasted
space

CS33 Intro to Computer Systems XXV–44 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Internal Fragmentation

Block 1

Block 2

Block 3

allocated
space

wasted
space

CS33 Intro to Computer Systems XXV–45 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Variations

• Next fit
– like first fit, but the next search starts where the

previous ended
• Worst fit

– always allocate from largest free block
» perhaps reduces the number of “too small” blocks

• Free-list insertion
– LIFO

» easy to do
» O(1)

– ordered insertion
» O(n)

CS33 Intro to Computer Systems XXV–46 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 4

Assume that best-fit results in less external
fragmentation than first-fit.
We are running an application with modest
memory demands. Which allocation strategy is
likely to result in better performance (in terms
of time) for the application:

a) first-fit with LIFO insertion
b) first-fit with ordered insertion
c) best-fit

