
CS33 Intro to Computer Systems XXVI–1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Storage Allocation

Let's assume we link together all the free blocks, as in the slide. If we'd like to allocate a
block of a particular size, we need to find a free block of at least that size. What search
strategy do we use to find it? An easy approach is to search, starting at the beginning of
the list, until we find a block that's big enough, and use it (this is known as first fit). An
alternative strategy, that perhaps might make better use of the available space, is to
search through the entire list of free blocks and choose a block that's the smallest of
those that are big enough (this is known as best fit).

CS33 Intro to Computer Systems XXVI–2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Finding the Right Free Block

Free (28 bytes)

Allocated

Free (40 bytes)

Allocated

Free (32 bytes)

Allocated

malloc(24)

• Search strategies
• first fit
• best fit

CS33 Intro to Computer Systems XXVI–3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

A Problem

• A malloc request is for a block of 32 bytes
• The block found on the free list is 1024 bytes

long
• Should malloc return a pointer to the entire

1024-byte block?

It makes no sense for malloc to return a block that's much larger than needed. Instead,
it should split the block into two pieces: one piece is returned to the caller and is at least
as large as was requested. The other piece is put back on the free list with an adjusted
size.

CS33 Intro to Computer Systems XXVI–4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Splitting

Free (1024 bytes) Free (992 bytes)

Allocated

Here we've freed a block and end up with three free blocks in a row. The problem is that
if we now attempt to allocate a block, say of size 52, we won't find a free block that's big
enough, even though we clearly have enough space.

CS33 Intro to Computer Systems XXVI–5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Another Problem

Free (28 bytes)

Allocated

Free (40 bytes)

Allocated

Free (32 bytes)

Allocated

x

ç√

Free (28 bytes)

Free (16 bytes)

Free (40 bytes)

Allocated

Free (32 bytes)

Allocated

free(x)

The solution is known as coalescing: when freeing a block, we look at adjacent blocks. if
either or both adjacent blocks are free, we merge the newly freed block with its non-
allocated neighbors to form a single free block whose size is the sum of the sizes of the
blocks being coalesced.

CS33 Intro to Computer Systems XXVI–6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing

ç√

Free (28 bytes)

Free (16 bytes)

Free (40 bytes)

Allocated

Free (32 bytes)

Allocated

coalesce

Allocated

Allocated

Free (32 bytes)

Free (84 bytes)

CS33 Intro to Computer Systems XXVI–7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1
1200

1300

We have two free blocks of memory, of
sizes 1300 and 1200 (appearing in that
order). There are three successive
requests to malloc for allocations of 1000,
1100, and 250 bytes. Which approach does
best? (Hint: one of the two fails the last
request.)

a) first fit
b) best fit

Consider the situation in which we have one large pool of memory from which we will
allocate (and to which we will liberate) variable-sized pieces of memory. Assume that we
are currently in the situation shown at the top of the picture: two unallocated areas of
memory are left in the pool — one of size 1300 bytes, the other of size 1200 bytes. We
wish to process a series of allocation requests, and will try out two different algorithms.
The first is known as first fit — an allocation request is taken from the first area of
memory that is large enough to satisfy the request. The second is known as best fit —
the request is taken from the smallest area of memory that is large enough to satisfy the
request. On the principle that whatever requires the most work must work the best, one
might think that best fit would be the algorithm of choice.

The picture illustrates a case in which first fit behaves better than best fit. We first
allocate 1000 bytes. Under the first-fit approach (shown on the left side), this allocation
is taken from the topmost region of free memory, leaving behind a region of 300 bytes of
still unallocated memory. With the best-fit approach (shown on the right side), this
allocation is taken from the bottommost region of free memory, leaving behind a region
of 200 bytes of still-unallocated memory. The next allocation is for 1100 bytes. Under
first fit, we now have two regions of 300 bytes and 100 bytes. Under best fit, we have
two regions of 200 bytes. Finally, there is an allocation of 250 bytes. Under first fit this
leaves behind two regions of 50 bytes and 100 bytes, but the allocation cannot be
handled under best fit — neither remaining region is large enough.

This example comes from the classic book, The Art of Computer Programming, Vol. 1,
Fundamental Algorithms, by Donald Knuth.

CS33 Intro to Computer Systems XXVI–8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Allocation

1200

300

200
1300

Stuck!

300

100

50

100

200

200

1000 bytes

1100 bytes

250 bytes

First Fit Best Fit

1200

1300

Neither first fit nor best fit is ideal. In practice, both work reasonably well in most
situations. First fit has the advantage in that it doesn't always require looking at the
sizes of all free blocks of memory.

CS33 Intro to Computer Systems XXVI–9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Some Observations

• Best fit
– perhaps leaves behind chunks that are too small to

be of use
– requires linear time (in size of free list) for malloc

• First fit
– small chunks congregate at beginning of free list
– upper bound of linear time for malloc, but often

much less

When we analyze the behavior of our storage-allocation approaches, we're concerned
about fragmentation – how much storage is wasted.

CS33 Intro to Computer Systems XXVI–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Fragmentation

• Fragmentation refers to the wastage of
memory due to our allocation policy

• Two sorts
– external fragmentation
– internal fragmentation

When we analyze the behavior of our storage-allocation approaches, we're concerned
about fragmentation – how much storage is wasted.

CS33 Intro to Computer Systems XXVI–11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Fragmentation

• Fragmentation refers to the wastage of
memory due to our allocation policy

• Two sorts
– external fragmentation
– internal fragmentation

External fragmentation is when our allocation policy produces free blocks that are too
small to be of use.

CS33 Intro to Computer Systems XXVI–12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

External Fragmentation

Free (60 bytes)

Allocated
Free (8 bytes)

Allocated
Free (8 bytes)

Allocated

Free (8 bytes)

Wasted
space

While this isn't important for this course, internal fragmentation occurs when memory is
allocated in fixed-size blocks, say 4k bytes each. If we allocate space for a data structure
whose size is not a multiple of the block size, the wasted space is said to be due to
internal fragmentation.

Note that for the malloc project (coming out soon), we will do next fit with LIFO insertion.

CS33 Intro to Computer Systems XXVI–13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Internal Fragmentation

Block 1

Block 2

Block 3

allocated
space

wasted
space

LIFO (last in first out) insertion simply means that items are always inserted at the
beginning of the free list. With ordered insertion, we keep the free list ordered by the size
of the block (from smallest to largest). Note that LIFO insertion tends to put larger blocks
at the beginning of the free list, which is good for first-fit allocation.

Note that for the malloc project (coming out soon), we will do first fit with LIFO insertion.

CS33 Intro to Computer Systems XXVI–14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Variations

• Next fit
– like first fit, but the next search starts where the

previous ended
• Worst fit

– always allocate from largest free block
» perhaps reduces the number of “too small” blocks

• Free-list insertion
– LIFO

» easy to do
» O(1)

– ordered insertion
» O(n)

By “modest memory demands”, we mean that malloc, free, and related functions are not
called frequently.

CS33 Intro to Computer Systems XXVI–15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2

Assume that best-fit results in less external
fragmentation than first-fit.
We are running an application with modest
memory demands. Which allocation strategy is
likely to result in better performance (in terms
of time) for the application?

a) first-fit with LIFO insertion
b) first-fit with ordered insertion
c) best-fit

It's now time to design the data structures we need to represent our "heap" – the
dynamic memory region.

CS33 Intro to Computer Systems XXVI–16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Data Structure Requirements

• All blocks
– we need to know how big they are

» when free is called, it must be known how much to
free

» when looking at a free block in malloc, we need to
know its size

– we need to know which they are: free or allocated
» needed for coalescing

• Free blocks
– they need to be linked into the free list

One solution (which we use in the malloc assignment) is the boundary tags approach.
Here we have a fixed overhead for each block of memory (whether free or allocated) that
indicates its size and whether it's free. So that we can determine if adjacent blocks are
free (and what their sizes are), we put this information at each end of the block. The
non-overhead portion of the block (which is available to hold data) is called the payload.

One could set the size to be the size of the entire block, or the size of just the payload –
either way can be made to work. We find it more convenient for the size to be that of the
entire block. Thus the size of the payload is size minus the amount of memory required
to hold the boundary tags (in our implementation, each boundary tag (containing size
and the allocated-or-free bit) is a long; thus the total amount of memory used for the
boundary tags is 16 bytes).

CS33 Intro to Computer Systems XXVI–17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Solution: Boundary Tags

Payload

Size A/F

Size A/F

Splitting a block is straightforward. We take a block that was previously free and divide
it into two blocks – an allocated block that's big enough to hold the storage request, and
the remainder represented as a free block.

CS33 Intro to Computer Systems XXVI–18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Splitting a Block

Free Block

1040 0

1040 0

Free Block

992 0

48 1

992 0
48 1

Allocated Block

The global variable flist_first is a pointer to the first item in the free list (and is null if
the free list is empty).

CS33 Intro to Computer Systems XXVI–19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Representing the Free List

• We need a pointer to the first element
– flist_first

• We need to traverse the list from beginning to
end
– required by malloc

• We need to merge adjacent blocks
– this may require removing a block from the free list,

then reinserting it (as part of a coalesced block)
• Links may be put in the free blockʼs payload

area
– not needed for allocated blocks!

Here's our representation of a free block. Note that it has both a forward link (flink) and
a backwards link (blink) – thus the free list is doubly linked.

CS33 Intro to Computer Systems XXVI–20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Free Block Representation

Size 0

Size 0

flink
blink

The free list is a circular, doubly linked list.

CS33 Intro to Computer Systems XXVI–21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Free List

Size 0

Size 0

flink
blink

Size 0

Size 0

flink
blink

Size 0

Size 0

flink
blink

flist_first

If the course had a final exam, this question would definitely be on it. Make sure you
understand the answer. It will come up again in the course (and count towards your
grade!).

CS33 Intro to Computer Systems XXVI–22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 3

Why is the free list doubly linked?

a) we donʼt really need it to be doubly linked
for malloc and free, but it may be
necessary for some future operations

b) to facilitate sorting the free list
c) so we can traverse it in both directions
d) so that, given a pointer to an arbitrary free

block, we can easily remove the block
from the list

CS33 Intro to Computer Systems XXVI–23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 4

Why is the free list circular?

a) to facilitate implementing the next-fit
search strategy

b) so that we donʼt have to special-case the
the handling of the first and last list
elements

c) both of the above
d) none of the above

CS33 Intro to Computer Systems XXVI–24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Heap ≠ Free List

• Heap
– collection of all memory usable as dynamic

storage: the dynamic portion of the address space
» both allocated and free

• Free list
– those blocks of the heap that are free

» linked together (circular, doubly)

• Both important, but different
• Confusion: what does next block mean?

– next adjacent block (next in heap)
– next free block (next in free list)

We now look at implementing the coalesce operation, given our data structures. Let's
assume that we're about to free the middle block, of size 40. To handle coalescing, we
need to know whether the previous block and the next block are free.

CS33 Intro to Computer Systems XXVI–25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing Revisited

68 ?

68 ?

40 1

40 1

96 ?

96 ?

• We are freeing a block
• is the previous block free?
• is the next block free?
• are both free?

Suppose the previous block is free, but the next block is allocated. Thus, the previous
block is in the free list. We'll assume it's not the first element of the free list, which is
pointed to by flist_first.

CS33 Intro to Computer Systems XXVI–26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing: Previous Free (1)

68 0

68 0

flink
blink

40 1

40 1
96 1

96 1

104 0

104 0

flink
blink

136 0

136 0

flink
blink

flist_first

136 0

136 0

flink
blink

We first pull the previous block from the free list.

CS33 Intro to Computer Systems XXVI–27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing: Previous Free (2)

68 0

68 0

flink
blink

40 1

40 1
96 1

96 1

104 0

104 0

flink
blink

136 0

136 0

flink
blink

flist_first

136 0

136 0

flink
blink

We the merge the newly freed block with the previous block.

CS33 Intro to Computer Systems XXVI–28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing: Previous Free (3)

68 0

68 0

flink
blink

40 1

40 1
96 1

96 1

104 0

104 0

flink
blink

136 0

136 0

flink
blink

flist_first

136 0

136 0

flink
blink

108 0
flink
blink

108 0
96 1

96 1

Finally, we add the merged free block to the beginning of the free list.

This, of course, is not the only way to do this. We could simply leave the previous block
in the free list at its current position and increase its size so as to absorb the block
being freed. This perhaps could be more efficient than what's shown in the slide, but it
leads to some slight complications in the code. Feel free to do it either way in your own
code.

A potential advantage of implementing coalesce as done here is that it puts a potentially
larger block at the beginning of the free list, possibly improving the performance of first
fit.

CS33 Intro to Computer Systems XXVI–29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing: Previous Free (4)

108 0
flink
blink

108 0
96 1

96 1

104 0

104 0

flink
blink

136 0

136 0

flink
blink

flist_first

136 0

136 0

flink
blink

Here the previous block is allocated but the next block is free.

CS33 Intro to Computer Systems XXVI–30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing: Next Free (1)

68 1

68 1
40 1

40 1
96 0

96 0

flink
blink

56 0

56 0

flink
blink

72 0

72 0

flink
blink

flist_first

136 0

136 0

flink
blink

We first pull the next block from the free list.

CS33 Intro to Computer Systems XXVI–31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing: Next Free (2)

68 1

68 1
40 1

40 1
96 0

96 0

flink
blink

56 0

56 0

flink
blink

72 0

72 0

flink
blink

flist_first

136 0

136 0

flink
blink

We then merge the block we're freeing with the next block.

CS33 Intro to Computer Systems XXVI–32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing: Next Free (3)

68 1

68 1
40 1

40 1
96 0

96 0

flink
blink

56 0

56 0

flink
blink

72 0

72 0

flink
blink

flist_first

136 0

136 0

flink
blink

68 1

68 1
136 0

136 0

flink
blink

Finally, we insert the combined block into the beginning of the free list.

Again, there are other ways for doing this. In particular, one might simply replace the
next block with the combined block, putting it into the free list where the next block
was.

CS33 Intro to Computer Systems XXVI–33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing: Next Free (4)

68 1

68 1
136 0

136 0

flink
blink

56 0

56 0

flink
blink

72 0

72 0

flink
blink

flist_first

136 0

136 0

flink
blink

Finally, we have the case in which both the previous and the next blocks are free.

CS33 Intro to Computer Systems XXVI–34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing: Both Free (1)

68 0

68 0

flink
blink

40 1

40 1
96 0

96 0

flink
blink

104 0

104 0

flink
blink

136 0

136 0

flink
blink

56 0

56 0

flink
blink

72 0

72 0

flink
blink

flist_first

136 0

136 0

flink
blink

We remove both the prev and next blocks from the free list.

CS33 Intro to Computer Systems XXVI–35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing: Both Free (2)

68 0

68 0

flink
blink

40 1

40 1
96 0

96 0

flink
blink

104 0

104 0

flink
blink

136 0

136 0

flink
blink

56 0

56 0

flink
blink

72 0

72 0

flink
blink

flist_first

136 0

136 0

flink
blink

We merge the block we're freeing with the prev and next blocks.

CS33 Intro to Computer Systems XXVI–36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing: Both Free (3)

68 0

68 0

flink
blink

40 1

40 1
96 0

96 0

flink
blink

104 0

104 0

flink
blink

136 0

136 0

flink
blink

56 0

56 0

flink
blink

72 0

72 0

flink
blink

flist_first

136 0

136 0

flink
blink

204 0
flink
blink

204 0

Finally we insert the combined block into the beginning of the free list.

CS33 Intro to Computer Systems XXVI–37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing: Both Free (4)

204 0
flink
blink

204 0

104 0

104 0

flink
blink

136 0

136 0

flink
blink

56 0

56 0

flink
blink

72 0

72 0

flink
blink

flist_first

136 0

136 0

flink
blink

What we might like to be able to do in C is expressed on the slide. Unfortunately, C does
not allow such variable-sized arrays. Another concern is the allocated flag, which we’d
like to be included in the size fields.

CS33 Intro to Computer Systems XXVI–38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

C vs. Storage Allocation

Size

Payload

1

Size 1

Size 0

Size 0

flink

blink

typedef struct block {
 long size;
 long payload[size/8 - 2];
 long end_size;
} block_t;

typedef struct free_block {
 long size;
 struct free_block *flink;
 struct free_block *blink;
 long filler[size/8 - 4];
 long end_size;
} free_block_t;

Putting a zero for the dimension of payload is a way of saying that we do not know a
priori how big payload will be, so we give it an (arbitrary) size of 0. Note that sizeof(size_t)
is 8 (i.e., size_t is a typedef for a long).

CS33 Intro to Computer Systems XXVI–39 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Overcoming C

• Think objects
– a block is an object

» opaque to the outside world
– define accessor functions to get and set its

contents

typedef struct block {
 size_t size;
 size_t payload[0];
} block_t;

In this example we have an allocated block of 40 bytes. Its size and end size fields have
their low-order bits set to one to indicate that the block is allocated. (Since each element
of payload is 8 bytes long, the entire allocated block, including tags, is 40 bytes long.)

CS33 Intro to Computer Systems XXVI–40 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Allocated Block

40+1size
payload[0]
payload[1]
payload[2]

40+1payload[3]

actual
payload

end size

For a free block, the size fields contain the exact size of the block: the allocated bits are
zeroes. The first two elements of payload are the flink and blink pointers, respectively.

CS33 Intro to Computer Systems XXVI–41 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Free Block

40+0size
payload[0]
payload[1]
payload[2]

40+0payload[3]

flink

end size

blink

• In general, end size is at payload[size/8 – 2]

If we assume that the size of a block is always even (in practice it's probably a multiple
of 4 or 8), then we can assume the least significant bit is zero and use that bit position
to represent the allocated flag.

CS33 Intro to Computer Systems XXVI–42 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Overloading Size
Size a

size_t block_allocated(block_t *b) {
 return b->size & 1;
}

size_t block_size(block_t *b) {
 return b->size & -2;
}

The block_end_tag function returns the address of a block's end tag, given the address
of the beginning of the block (where its front tag is).

CS33 Intro to Computer Systems XXVI–43 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

End Size

size_t *block_end_tag(block_t *b) {
 return &b->payload[b->size/8 - 2];
}

Size a
payload[0]
payload[1]

…

payload[Size/8 - 3]
payload[Size/8 - 2] end size

Here we have functions for setting both tags of a block.

CS33 Intro to Computer Systems XXVI–44 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Setting the Size

void block_set_size(block_t *b, size_t size) {
 assert(!(size & 7)); // multiple of 8
 size |= block_allocated(b); // preserve alloc bit
 b->size = size;
 *block_end_tag(b) = size;
}

void block_set_allocated(block_t *b, size_t a) {
 assert((a == 0) || (a == 1));
 if (a) {
 b->size |= 1;
 *block_end_tag(b) |= 1;
 } else {
 b->size &= -2;
 *block_end_tag(b) &= -2;
 }
}

We take advantage of the boundary-tags approach to determine if the previous block is
free.

CS33 Intro to Computer Systems XXVI–45 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Is Previous Adjacent Block Free?

Size

Payload

a

Size a

Size ?

size_t block_prev_allocated(
 block_t *b) {
 return b->payload[-2] & 1;
}

Similarly, we can determine if the next block is free.

CS33 Intro to Computer Systems XXVI–46 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Is Next Adjacent Block Free?

Size

Payload

a

Size a

Size ?

block_t *block_next(
 block_t *b) {
 return (block_t *)
 ((char *)b + block_size(b));
}

size_t block_next_allocated(
 block_t *b) {
 return block_allocated(
 block_next(b));
}

An important operation is to add a block to the beginning of the free list. We start with a
picture of the free list.

CS33 Intro to Computer Systems XXVI–47 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Adding a Block to the Free List (1)

Size 0

Size 0

flink
blink

Size 0

Size 0

flink
blink

Size 0

Size 0

flink
blink

flist_first

Size 0

Size 0

flink
blink

Here's what it looks like after we add the block.

CS33 Intro to Computer Systems XXVI–48 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Adding a Block to the Free List (2)

Size 0

Size 0

flink
blink

Size 0

Size 0

flink
blink

Size 0

Size 0

flink
blink

flist_first

Size 0

Size 0

flink
blink

Here are a few more simple functions we need to access and set fields of blocks.

CS33 Intro to Computer Systems XXVI–49 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Accessing the Object
block_t *block_flink(block_t *b) {
 return (block_t *)b->payload[0];
}

void block_set_flink(block_t *b, block_t *next) {
 b->payload[0] = (size_t)next;
}

block_t *block_blink(block_t *b) {
 return (block_t *)b->payload[1];
}

void block_set_blink(block_t *b, block_t *next) {
 b->payload[1] = (size_t)next;
}

Using our functions, here's the code to insert a block at the beginning of the free list.

CS33 Intro to Computer Systems XXVI–50 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Insertion Code
void insert_free_block(block_t *fb) {
 assert(!block_allocated(fb));
 if (flist_first != NULL) {
 block_t *last =
 block_blink(flist_first);
 block_set_flink(fb, flist_first);
 block_set_blink(fb, last);
 block_set_flink(last, fb);
 block_set_blink(flist_first, fb);
 } else {
 block_set_flink(fb, fb);
 block_set_blink(fb, fb);
 }
 flist_first = fb;
}

We've used a lot of functions without thinking about their effect on performance. While
we know that the overhead of a function call is not great, there is still some overhead
that might best be eliminated.

CS33 Intro to Computer Systems XXVI–51 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Performance

• Won’t all the calls to the accessor functions
slow things down a lot?
– yes — not just a lot, but tons

• Why not use macros (#define) instead?
– the textbook does this
– it makes the code impossible to debug

» gdb shows only the name of the macro, not its body
• What to do????

If we declare a function to be inline, the C compiler is instructed to replace calls to the
function with its actual code (unless –O0 is specified). Thus, inlined functions have no
function-call overhead (though they do increase the total size of our code, which does
come at some cost).

Note that inline functions are declared to be static. This makes it possible to have two .c
files that use an inline function, with one compiled with –O0 and the other perhaps with
–O1 – since the function is static, it can be different in the two source files.

CS33 Intro to Computer Systems XXVI–52 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Inline Functions

static inline size_t block_size(
 block_t *b) {
 return b->size & -2;
}

– when debugging (–O0), the code is implemented as
a normal function
» easy to debug with gdb

– when optimized (–O1, –O2), calls to the function are
replaced with the body of the function
» no function-call overhead

The slide shows our heap, with allocated blocks shown in green and free blocks in white.
At either end of each block are its tags.

An issue that comes up when implementing malloc/free is dealing with the first and last
blocks, whether they are allocated or free. What is the prev block relative to the first
block? What is the next block relative to the last block? Having to special-case the first
and last blocks can help make your code unnecessarily complicated. To avoid these
complications, we use prolog and epilog blocks. These are blocks of minimum size
(containing just two tags and no payload) that are marked allocated. They are on either
end of the list. Since they're marked allocated, when a check is made of the prev block
relative to the first real block, it will always appear to be allocated, and similarly with the
next block relative to the last real block.

Thus, the initial heap might consist of three blocks: the prolog, a block representing the
initial free space, and an epilog. Of course, when the heap is expanded by calling sbrk,
the epilog must be moved to the new end of the heap.

CS33 Intro to Computer Systems XXVI–53 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Prolog and Epilog

prev? next?

prolog epilog

