
CS33 Intro to Computer Systems XXVI–1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Storage Allocation

CS33 Intro to Computer Systems XXVI–2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Finding the Right Free Block

Free (28 bytes)

Allocated

Free (40 bytes)

Allocated

Free (32 bytes)

Allocated

malloc(24)

• Search strategies
• first fit
• best fit

CS33 Intro to Computer Systems XXVI–3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

A Problem

• A malloc request is for a block of 32 bytes
• The block found on the free list is 1024 bytes

long
• Should malloc return a pointer to the entire

1024-byte block?

CS33 Intro to Computer Systems XXVI–4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Splitting

Free (1024 bytes) Free (992 bytes)

Allocated

CS33 Intro to Computer Systems XXVI–5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Another Problem

Free (28 bytes)

Allocated

Free (40 bytes)

Allocated

Free (32 bytes)

Allocated

x

ç√

Free (28 bytes)

Free (16 bytes)

Free (40 bytes)

Allocated

Free (32 bytes)

Allocated

free(x)

CS33 Intro to Computer Systems XXVI–6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing

ç√

Free (28 bytes)

Free (16 bytes)

Free (40 bytes)

Allocated

Free (32 bytes)

Allocated

coalesce

Allocated

Allocated

Free (32 bytes)

Free (84 bytes)

CS33 Intro to Computer Systems XXVI–7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1
1200

1300

We have two free blocks of memory, of
sizes 1300 and 1200 (appearing in that
order). There are three successive
requests to malloc for allocations of 1000,
1100, and 250 bytes. Which approach does
best? (Hint: one of the two fails the last
request.)

a) first fit
b) best fit

CS33 Intro to Computer Systems XXVI–8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Allocation

1200

300

200

1300

Stuck!

300

100

50

100

200

200

1000 bytes

1100 bytes

250 bytes

First Fit Best Fit

1200

1300

CS33 Intro to Computer Systems XXVI–9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Some Observations

• Best fit
– perhaps leaves behind chunks that are too small to

be of use
– requires linear time (in size of free list) for malloc

• First fit
– small chunks congregate at beginning of free list
– upper bound of linear time for malloc, but often

much less

CS33 Intro to Computer Systems XXVI–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Fragmentation

• Fragmentation refers to the wastage of
memory due to our allocation policy

• Two sorts
– external fragmentation
– internal fragmentation

CS33 Intro to Computer Systems XXVI–11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Fragmentation

• Fragmentation refers to the wastage of
memory due to our allocation policy

• Two sorts
– external fragmentation
– internal fragmentation

CS33 Intro to Computer Systems XXVI–12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

External Fragmentation

Free (60 bytes)

Allocated
Free (8 bytes)

Allocated
Free (8 bytes)

Allocated

Free (8 bytes)

Wasted
space

CS33 Intro to Computer Systems XXVI–13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Internal Fragmentation

Block 1

Block 2

Block 3

allocated
space

wasted
space

CS33 Intro to Computer Systems XXVI–14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Variations

• Next fit
– like first fit, but the next search starts where the

previous ended
• Worst fit

– always allocate from largest free block
» perhaps reduces the number of “too small” blocks

• Free-list insertion
– LIFO

» easy to do
» O(1)

– ordered insertion
» O(n)

CS33 Intro to Computer Systems XXVI–15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2

Assume that best-fit results in less external
fragmentation than first-fit.
We are running an application with modest
memory demands. Which allocation strategy is
likely to result in better performance (in terms
of time) for the application?

a) first-fit with LIFO insertion
b) first-fit with ordered insertion
c) best-fit

CS33 Intro to Computer Systems XXVI–16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Data Structure Requirements

• All blocks
– we need to know how big they are

» when free is called, it must be known how much to
free

» when looking at a free block in malloc, we need to
know its size

– we need to know which they are: free or allocated
» needed for coalescing

• Free blocks
– they need to be linked into the free list

CS33 Intro to Computer Systems XXVI–17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Solution: Boundary Tags

Payload

Size A/F

Size A/F

CS33 Intro to Computer Systems XXVI–18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Splitting a Block

Free Block

1040 0

1040 0

Free Block

992 0

48 1

992 0

48 1

Allocated Block

CS33 Intro to Computer Systems XXVI–19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Representing the Free List

• We need a pointer to the first element
– flist_first

• We need to traverse the list from beginning to
end
– required by malloc

• We need to merge adjacent blocks
– this may require removing a block from the free list,

then reinserting it (as part of a coalesced block)
• Links may be put in the free blockʼs payload

area
– not needed for allocated blocks!

CS33 Intro to Computer Systems XXVI–20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Free Block Representation

Size 0

Size 0

flink
blink

CS33 Intro to Computer Systems XXVI–21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Free List

Size 0

Size 0

flink
blink

Size 0

Size 0

flink
blink

Size 0

Size 0

flink
blink

flist_first

CS33 Intro to Computer Systems XXVI–22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 3

Why is the free list doubly linked?

a) we donʼt really need it to be doubly linked
for malloc and free, but it may be
necessary for some future operations

b) to facilitate sorting the free list
c) so we can traverse it in both directions
d) so that, given a pointer to an arbitrary free

block, we can easily remove the block
from the list

CS33 Intro to Computer Systems XXVI–23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 4

Why is the free list circular?

a) to facilitate implementing the next-fit
search strategy

b) so that we donʼt have to special-case the
the handling of the first and last list
elements

c) both of the above
d) none of the above

CS33 Intro to Computer Systems XXVI–24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Heap ≠ Free List

• Heap
– collection of all memory usable as dynamic

storage: the dynamic portion of the address space
» both allocated and free

• Free list
– those blocks of the heap that are free

» linked together (circular, doubly)

• Both important, but different
• Confusion: what does next block mean?

– next adjacent block (next in heap)
– next free block (next in free list)

CS33 Intro to Computer Systems XXVI–25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing Revisited

68 ?

68 ?

40 1

40 1

96 ?

96 ?

• We are freeing a block
• is the previous block free?
• is the next block free?
• are both free?

CS33 Intro to Computer Systems XXVI–26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing: Previous Free (1)

68 0

68 0

flink
blink

40 1

40 1
96 1

96 1

104 0

104 0

flink
blink

136 0

136 0

flink
blink

flist_first

136 0

136 0

flink
blink

CS33 Intro to Computer Systems XXVI–27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing: Previous Free (2)

68 0

68 0

flink
blink

40 1

40 1
96 1

96 1

104 0

104 0

flink
blink

136 0

136 0

flink
blink

flist_first

136 0

136 0

flink
blink

CS33 Intro to Computer Systems XXVI–28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing: Previous Free (3)

68 0

68 0

flink
blink

40 1

40 1
96 1

96 1

104 0

104 0

flink
blink

136 0

136 0

flink
blink

flist_first

136 0

136 0

flink
blink

108 0
flink
blink

108 0
96 1

96 1

CS33 Intro to Computer Systems XXVI–29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing: Previous Free (4)

108 0
flink
blink

108 0
96 1

96 1

104 0

104 0

flink
blink

136 0

136 0

flink
blink

flist_first

136 0

136 0

flink
blink

CS33 Intro to Computer Systems XXVI–30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing: Next Free (1)

68 1

68 1
40 1

40 1
96 0

96 0

flink
blink

56 0

56 0

flink
blink

72 0

72 0

flink
blink

flist_first

136 0

136 0

flink
blink

CS33 Intro to Computer Systems XXVI–31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing: Next Free (2)

68 1

68 1
40 1

40 1
96 0

96 0

flink
blink

56 0

56 0

flink
blink

72 0

72 0

flink
blink

flist_first

136 0

136 0

flink
blink

CS33 Intro to Computer Systems XXVI–32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing: Next Free (3)

68 1

68 1
40 1

40 1
96 0

96 0

flink
blink

56 0

56 0

flink
blink

72 0

72 0

flink
blink

flist_first

136 0

136 0

flink
blink

68 1

68 1
136 0

136 0

flink
blink

CS33 Intro to Computer Systems XXVI–33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing: Next Free (4)

68 1

68 1
136 0

136 0

flink
blink

56 0

56 0

flink
blink

72 0

72 0

flink
blink

flist_first

136 0

136 0

flink
blink

CS33 Intro to Computer Systems XXVI–34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing: Both Free (1)

68 0

68 0

flink
blink

40 1

40 1
96 0

96 0

flink
blink

104 0

104 0

flink
blink

136 0

136 0

flink
blink

56 0

56 0

flink
blink

72 0

72 0

flink
blink

flist_first

136 0

136 0

flink
blink

CS33 Intro to Computer Systems XXVI–35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing: Both Free (2)

68 0

68 0

flink
blink

40 1

40 1
96 0

96 0

flink
blink

104 0

104 0

flink
blink

136 0

136 0

flink
blink

56 0

56 0

flink
blink

72 0

72 0

flink
blink

flist_first

136 0

136 0

flink
blink

CS33 Intro to Computer Systems XXVI–36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing: Both Free (3)

68 0

68 0

flink
blink

40 1

40 1
96 0

96 0

flink
blink

104 0

104 0

flink
blink

136 0

136 0

flink
blink

56 0

56 0

flink
blink

72 0

72 0

flink
blink

flist_first

136 0

136 0

flink
blink

204 0
flink
blink

204 0

CS33 Intro to Computer Systems XXVI–37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Coalescing: Both Free (4)

204 0
flink
blink

204 0

104 0

104 0

flink
blink

136 0

136 0

flink
blink

56 0

56 0

flink
blink

72 0

72 0

flink
blink

flist_first

136 0

136 0

flink
blink

CS33 Intro to Computer Systems XXVI–38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

C vs. Storage Allocation

Size

Payload

1

Size 1

Size 0

Size 0

flink

blink

typedef struct block {
 long size;
 long payload[size/8 - 2];
 long end_size;
} block_t;

typedef struct free_block {
 long size;
 struct free_block *flink;
 struct free_block *blink;
 long filler[size/8 - 4];
 long end_size;
} free_block_t;

CS33 Intro to Computer Systems XXVI–39 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Overcoming C

• Think objects
– a block is an object

» opaque to the outside world
– define accessor functions to get and set its

contents

typedef struct block {
 size_t size;
 size_t payload[0];
} block_t;

CS33 Intro to Computer Systems XXVI–40 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Allocated Block

40+1size
payload[0]
payload[1]
payload[2]

40+1payload[3]

actual
payload

end size

CS33 Intro to Computer Systems XXVI–41 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Free Block

40+0size
payload[0]
payload[1]
payload[2]

40+0payload[3]

flink

end size

blink

• In general, end size is at payload[size/8 – 2]

CS33 Intro to Computer Systems XXVI–42 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Overloading Size
Size a

size_t block_allocated(block_t *b) {
 return b->size & 1;
}

size_t block_size(block_t *b) {
 return b->size & -2;
}

CS33 Intro to Computer Systems XXVI–43 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

End Size

size_t *block_end_tag(block_t *b) {
 return &b->payload[b->size/8 - 2];
}

Size a
payload[0]
payload[1]

…

payload[Size/8 - 3]
payload[Size/8 - 2] end size

CS33 Intro to Computer Systems XXVI–44 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Setting the Size

void block_set_size(block_t *b, size_t size) {
 assert(!(size & 7)); // multiple of 8
 size |= block_allocated(b); // preserve alloc bit
 b->size = size;
 *block_end_tag(b) = size;
}

void block_set_allocated(block_t *b, size_t a) {
 assert((a == 0) || (a == 1));
 if (a) {
 b->size |= 1;
 *block_end_tag(b) |= 1;
 } else {
 b->size &= -2;
 *block_end_tag(b) &= -2;
 }
}

CS33 Intro to Computer Systems XXVI–45 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Is Previous Adjacent Block Free?

Size

Payload

a

Size a

Size ?

size_t block_prev_allocated(
 block_t *b) {
 return b->payload[-2] & 1;
}

CS33 Intro to Computer Systems XXVI–46 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Is Next Adjacent Block Free?

Size

Payload

a

Size a

Size ?

block_t *block_next(
 block_t *b) {
 return (block_t *)
 ((char *)b + block_size(b));
}

size_t block_next_allocated(
 block_t *b) {
 return block_allocated(
 block_next(b));
}

CS33 Intro to Computer Systems XXVI–47 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Adding a Block to the Free List (1)

Size 0

Size 0

flink
blink

Size 0

Size 0

flink
blink

Size 0

Size 0

flink
blink

flist_first

Size 0

Size 0

flink
blink

CS33 Intro to Computer Systems XXVI–48 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Adding a Block to the Free List (2)

Size 0

Size 0

flink
blink

Size 0

Size 0

flink
blink

Size 0

Size 0

flink
blink

flist_first

Size 0

Size 0

flink
blink

CS33 Intro to Computer Systems XXVI–49 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Accessing the Object
block_t *block_flink(block_t *b) {
 return (block_t *)b->payload[0];
}

void block_set_flink(block_t *b, block_t *next) {
 b->payload[0] = (size_t)next;
}

block_t *block_blink(block_t *b) {
 return (block_t *)b->payload[1];
}

void block_set_blink(block_t *b, block_t *next) {
 b->payload[1] = (size_t)next;
}

CS33 Intro to Computer Systems XXVI–50 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Insertion Code
void insert_free_block(block_t *fb) {
 assert(!block_allocated(fb));
 if (flist_first != NULL) {
 block_t *last =
 block_blink(flist_first);
 block_set_flink(fb, flist_first);
 block_set_blink(fb, last);
 block_set_flink(last, fb);
 block_set_blink(flist_first, fb);
 } else {
 block_set_flink(fb, fb);
 block_set_blink(fb, fb);
 }
 flist_first = fb;
}

CS33 Intro to Computer Systems XXVI–51 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Performance

• Won’t all the calls to the accessor functions
slow things down a lot?
– yes — not just a lot, but tons

• Why not use macros (#define) instead?
– the textbook does this
– it makes the code impossible to debug

» gdb shows only the name of the macro, not its body

• What to do????

CS33 Intro to Computer Systems XXVI–52 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Inline Functions

static inline size_t block_size(
 block_t *b) {
 return b->size & -2;
}

– when debugging (–O0), the code is implemented as
a normal function
» easy to debug with gdb

– when optimized (–O1, –O2), calls to the function are
replaced with the body of the function
» no function-call overhead

CS33 Intro to Computer Systems XXVI–53 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Prolog and Epilog

prev? next?

prolog epilog

