CS 33

Storage Allocation (2)

CS33 Intro to Computer Systems XXVII-1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Adding a Block to the Free List (1)

flist_first -\)
Size 0
flink
blink
Size 0
flink
blink Size |8 .
blink Size |0 /
flink
Size 0 blink
Size 0

Size 0

CS33 Intro to Computer Systems XXVII-2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Adding a Block to the Free List (2)

flist_first

Size
flink
blink

Size

flink

blink

Size 0

CS33 Intro to Computer Systems

XXVII-3

Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Accessing the Object

block t *block flink(block t *b) {
return (block t *)b->payload[0];
}

void block set flink(block t *b, block t *next) {
b->payload[0] = (size_t)next;
}

block t *block blink (block t *Db) {
return (block t *)b->payload[l];
}

void block set blink(block t *b, block t *next) {
b->payload[l] = (size_t)next;
}

CS33 Intro to Computer Systems XXVII-4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Insertion Code

void insert free block(block t *fb) ({
assert (!block allocated(fb));
if (flist first != NULL) {
block t *last =
block blink(flist first);
block_set_flink(fb flist first);
block set blink(fb, last);
block_set_flink(last fb) ;
block set blink(flist first, fb);
} else {
block set flink(fb, fb);
block set blink(fb, fb);
}
flist first = fb;

CS33 Intro to Computer Systems XXVII-5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Performance

« Won't all the calls to the accessor functions
slow things down a lot?

— yes — not just a lot, but tons

 Why not use macros (#define) instead?
— the textbook does this

— it makes the code impossible to debug
» gdb shows only the name of the macro, not its body

« What to do????

CS33 Intro to Computer Systems XXVII-6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Inline Functions

static inline size t block size(
block t *b) {

return b->size & -2;

— when debugging (—00), the code is implemented as
a normal function

» easy to debug with gdb

— when optimized (-O1, —02), calls to the function are
replaced with the body of the function

» no function-call overhead

CS33 Intro to Computer Systems XXVII-7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Prolog and Epilog

prev? next?
prolog epilog

CS33 Intro to Computer Systems XXVII-8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33

Virtual Memory

CS33 Intro to Computer Systems XXVII-9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

The Address-Space Concept

* Protect processes from one another
* Protect the OS from user processes

* Provide efficient management of available
storage

CS33 Intro to Computer Systems XXVII-10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Memory Fence

User Area

CS33 Intro to Computer Systems XXVII-11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Base and Bounds Registers

spunog

Base register

spunog

Base register

CS33 Intro to Computer Systems XXVII-12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Swapping

User Area

CS33 Intro to Computer Systems XXVII-13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Overlays

CS33 Intro to Computer Systems XXVII-14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Virtual Memory

Process 1

Process 2

Process 3

CS33 Intro to Computer Systems XXVII-15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Memory Maps

page
 frames

WIN|[= (O

Real Memory

pages—

Qoo N/OoOoja|(~h|lWINI=|O

i
2
i
i
0
1 —
i
i
i
i
i
i
3
i
i

Memory Map
(page table)

-
o

A
-—

—oai—

-
N

-
w

N7/

Y
=

15
Virtual Memory

CS33 Intro to Computer Systems XXVII-16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Page Tables

20 12
Page # Offset
Virtual
Address
—
VIM|R|Prot| Page Frame #
i

CS33 Intro to Computer Systems XXVII-17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1

How many 2'2-byte pages fit in a 32-bit address
space?

a) a little over a 1000

b) a little over a million

c) a little over a billion

d) none of the above

CS33 Intro to Computer Systems XXVII-18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

VM is Your Friend ...

Not everything has to be in memory at once

— pages brought in (and pushed out) when needed

— unallocated parts of the address space consume no
memory

» e.g., hole between stack and dynamic areas

What’s mine is not YOUTIS (and vice versa)
— address spaces are disjoint

Sharing is ok though ...
— address spaces don’t have to be disjoint
» a single page frame may be mapped into multiple processes
| don’t trust you (or me)

— access to individual pages can be restricted
» read, write, execute, or any combination

CS33 Intro to Computer Systems XXVII-19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Page-Table Size

« Consider a full 23%2-byte address space
— assume 4096-byte (212-byte) pages
— 4 bytes per page-table entry
— the page table would consist of 232/212 (= 220) entries

— its size would be 222 bytes (or 4 megabytes)
» at $100/gigabyte
« around $0.40

* For a 2%*-byte address space
— assume 4096-byte (212-byte) pages
— 8 bytes per page-table entry
— the page table would consist of 264/212 (= 252) entries

— its size would be 2°° bytes (or 32 petabytes)
» at $1/gigabyte
« over $33 million

CS33 Intro to Computer Systems XXVII-20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

IA32 Paging

CR3

10 bits 10 bits 12 bits
i’ |
Page directory Page table Page

table

CS33 Intro to Computer Systems

XXVII-21

Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2

Can a page start at a virtual address that’s not
divisible by the page size?

a) yes
b) no

CS33 Intro to Computer Systems XXVII-22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Linux Intel IA32 VM Layout

~

7 3GB

4GB

—

Page directory

table
user

\ 0

CS33 Intro to Computer Systems XXVII-23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

x86-64 Virtual Address Format 1

63 47 38 29 20 11 0

unused

NI
M = v |
N — | | |
Page map :— k;

table N 1 =

Page = Ny

directory iy

pointer table dirpeigtc?r B
y Page table

table

4KB page

CS33 Intro to Computer Systems XXVII-24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

x86-64 Virtual Address Format 2

63 47 38 29 20 0

unused

NI
M = v |
N — |
Page map :— k;
table o nl
Page i
directory
pointer table dirpeigtc?ry
table

2MB page

CS33 Intro to Computer Systems XXVII-25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

x86-64 Virtual Address Format 3

63 47 38 29 0

unused /

Page map L]
table B

Page
directory
pointer table

1GB page

CS33 Intro to Computer Systems XXVII-26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Why Multiple Page Sizes?

 Fragmentation

— for region composed of 4KB pages, average
internal fragmentation is 2KB

— for region composed of 1GB pages, average
internal fragmentation is 512MB

- Page-table overhead

— larger page sizes have fewer page tables
» less overhead in representing mappings

CS33 Intro to Computer Systems XXVII-27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

x86-64 Address Space

OxXffffffffffffffff —
OS kernel — 247 bytes
Oxf£££800000000000 =
OxXffff7£f£f££f££fffff N
lllegal — 264248 pytes
0x0000800000000000 =
Ox00007ff£fffffffff B
User — 2% bytes
0x0000000000000000 .

CS33 Intro to Computer Systems XXVII-28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Performance

« Page table resides in real memory (DRAM)

* A 32-bit virtual-to-real translation requires two
accesses to page tables, plus the access to
the ultimate real address

— three real accesses for each virtual access
— 3X slowdown!
* A 64-bit virtual-to-real translation requires

four accesses to page tables, plus the access
to the ultimate real address

— 5X slowdown!

CS33 Intro to Computer Systems XXVII-29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Translation Lookaside Buffers

Page Frame #
Page Frame #
Page Frame #

Page Frame #

CS33 Intro to Computer Systems XXVII-30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 3

Recall that there is a 5x slowdown on memory
references via virtual memory on the x86-64. If
all references are translated via the TLB, the
slowdown will be

a) .5x (i.e. it will be faster, not slower)
b) 1x
C) 2x
d) 3x
e) 4x

CS33 Intro to Computer Systems XXVII-31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

OS Role in Virtual Memory

 Memory is like a cache

— quick access if what’s wanted is mapped via page
table

— slow if not — OS assistance required

« OS
— make sure what’s needed is mapped in

— make sure what’s no longer needed is not mapped
in

CS33 Intro to Computer Systems XXVII-32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Mechanism

* Program references memory

— if reference is mapped, access is quick

» even quicker if translation in TLB and referent in on-
chip cache

— if not, page-translation fault occurs and OS is
invoked

» determines desired page
» maps it in, if legal reference

CS33 Intro to Computer Systems XXVII-33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

The “Pageout Daemon”

Pageout
Daemon

—Disi—

In-Use Page Free Page
Frames Frames

CS33 Intro to Computer Systems XXVII-34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Managing Page Frames

VIM|R|Prot| Page Frame #

CS33 Intro to Computer Systems XXVII-35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Clock Algorithm

1
Back hand:
if (reference bit == 0)
remove page

A

\ Front hand.

reference bit =0

CS33 Intro to Computer Systems XXVII-36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Why is virtual memory used?

CS33 Intro to Computer Systems XXVII-37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

More VM than RM

Process

o

CS33 Intro to Computer Systems XXVII-38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Isolation

0
1
2 \ 0
x 5 1
\ 1
5 < g 3 |_page
4 frames
Process 1
5
1 / > / Real Memory
2
3 Memory Maps
(page tables)
4
5
Process 2
Virtual Memory

CS33 Intro to Computer Systems

XXVII-39

Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Sharing

0
1 —
\ / 0
4 Te— !
: 3 __page
S 4 frames
Process 1
5
/ ; 6
1 / g / Real Memory
2
3 Memory Maps
(page tables)
4
5
Process 2
Virtual Memory

CS33 Intro to Computer Systems XXVII-40 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

File I/O

Buffer

User Process

Buffer Cache

CS33 Intro to Computer Systems

XXVII-41

Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Multi-Buffered 1/O

Process

read(...)

i-1 i i+1
previous current probable
block block next block

CS33 Intro to Computer Systems XXVII-42 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Traditional I/O

1l: read f1, pO
3: read f1, pl
5: read £3, pO0

page 0

page 0

page 1

User Process 1

2:
4:

read £f2, pO0
read £f2, pl

5: read £3, pO0

page 0

page 0

page 1

User Process 2

page 0

page 1

page 0

page 1

page 0

Buffer Cache

Kernel Memory

CS33 Intro to Computer Systems

XXVII-43

Copyright © 2023 Thomas W. Doeppner. All rights reserved.

File 1
File 2
page0 [File3
ge 0
page 1 ge 0
ge 1
page 2 ge 1
age 2
page 3 age 2
ge 3
page 4 ge 3
ge 4
page 5 ge 4
age 5
page 6 age S
ge 6
page 7 ge 6
age 7
Disk Fage 7

Mapped File I/O

\{ File 1
page 0 page 0 page 0
page 1 page 1
page 2 — page 2 page 2
page 3 . page 3 page 3
page 4 page 4
page 5 page 5 page 5
page 6 page 6
page 7 /f page 7 page 7

\I:;irrc’:ﬁzls:nlmory Real Memory Disk

CS33 Intro to Computer Systems XXVII-44 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Multi-Process Mapped File I/O

page 0 \{ page 0
page 1
page 2 . page 2
)
page 3 g page 3
; /Qig
page 4 0 N e
page 5 page 5
page 6 page 6
7
page 7 /{ S
Real Memory
Process 2

Virtual Memorx
CS33 Intro to Computer Systems XXVII-45

Copyright © 2023 Thomas W. Doeppner. All rights reserved.

File 1

page 0

page 1

page 2

page 3

page 4

page 5

page 6

page 7

Disk

Mapped Files

 Traditional File I/O

char buf [BigEnough];

fd = open(file, O RDWR);

for (i=0; i<n recs; 1i++) {
read (fd, buf, sizeof (buf));
use (buf) ;

)
 Mapped File I/O

record t *MappedFile;

fd = open(file, O RDWR);
MappedFile = mmap(... , fd, ...);
for (1=0; i<n recs; 1++)

use (MappedFile[1]) ;

CS33 Intro to Computer Systems XXVII-46 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Mmap System Call

void *mmap (
void *addr,
// where to map file (0 if don’t care)
size t len,
// how much to map
int prot,
// memory protection (read, write, exec.)

int flags,

// shared vs. private, plus more
int fd,

// which file
off t off

// starting from where

) g

CS33 Intro to Computer Systems XXVII-47 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

The mmap System Call

[~

\.\/\

L2 Page L2 Page

L1 Page Tables Tables L1 Page
Table File Pages Table

CS33 Intro to Computer Systems XXVII-48 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Share-Mapped Files

[~

\.\/\

L2 Page L2 Page
L1 Page Tables Tables L1 Page
Table File Pages Table
Data = 17;

CS33 Intro to Computer Systems XXVII-49 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Private-Mapped Files

3

=N

L2 Page
L1 Page Tables
Table
Data = 17;

—
\ L2 Page
Tables L1 Page
F“\Y Pages Table

CS33 Intro to Computer Systems

XXVII-50

Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Example

int main() {
int fd;
dataObject t *dataObjectp;

fd = open("file", O RDWR) ;

if ((int) (dataObjectp = (dataObject t *)mmap (0,
sizeof (dataObject t),
PROT_READIPROT_WRITE, MAP SHARED, fd, 0)) == -1) {
perror ("mmap") ;
exit (1) ;

}

// dataObjectp points to region of (virtual) memory
// containing the contents of the file

CS33 Intro to Computer Systems XXVII-51 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

fork and mmap

int main () { int main () {
int x=1; int fd = open(...);
int *xp = (int *)mmap (...,
if (fork() == 0) { MAP SHARED, fd, ...);
// in child xp[0] = 1;
X = 2; if (fork() == 0) {
exit (0); // in child
} xp[0] = 2;
// in parent exit (0);
while (x==1) ({ }
// will loop forever // in parent
} while (xp[0]==1) {
return O; // will terminate
} }
return O;

}
XXVII-52

CS33 Intro to Computer Systems Copyright © 2023 Thomas W. Doeppner. All rights reserved.

