CS 33

Storage Allocation (2)
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Adding a Block to the Free List (1)

flist_first -\)
Size 0
flink
blink
Size 0
flink
blink Size |8 .
blink Size |0 /
flink
Size 0 blink
Size 0

Size 0
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Adding a Block to the Free List (2)

flist_first

Size
flink
blink

Size

flink

blink

Size 0
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Accessing the Object

block t *block flink(block t *b) {
return (block t *)b->payload[0];
}

void block set flink(block t *b, block t *next) {
b->payload[0] = (size_t)next;
}

block t *block blink (block t *Db) {
return (block t *)b->payload[l];
}

void block set blink(block t *b, block t *next) {
b->payload[l] = (size_t)next;
}
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Insertion Code

void insert free block(block t *fb) ({
assert (!block allocated(fb));
if (flist first != NULL) {
block t *last =
block blink(flist first);
block_set_flink(fb flist first);
block set blink(fb, last);
block_set_flink(last fb) ;
block set blink(flist first, fb);
} else {
block set flink(fb, fb);
block set blink(fb, fb);
}
flist first = fb;
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Performance

« Won't all the calls to the accessor functions
slow things down a lot?

— yes — not just a lot, but tons

 Why not use macros (#define) instead?
— the textbook does this

— it makes the code impossible to debug
» gdb shows only the name of the macro, not its body

« What to do????
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Inline Functions

static inline size t block size(
block t *b) {

return b->size & -2;

— when debugging (—00), the code is implemented as
a normal function

» easy to debug with gdb

— when optimized (-O1, —02), calls to the function are
replaced with the body of the function

» no function-call overhead
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Prolog and Epilog

prev? next?
prolog epilog
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CS 33

Virtual Memory
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The Address-Space Concept

* Protect processes from one another
* Protect the OS from user processes

* Provide efficient management of available
storage
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Memory Fence

User Area
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Base and Bounds Registers

spunog

Base register

spunog

Base register
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Swapping

User Area

CS33 Intro to Computer Systems XXVII-13  Copyright © 2023 Thomas W. Doeppner. All rights reserved.



Overlays
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Virtual Memory

Process 1

Process 2

Process 3
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Memory Maps
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Page Tables

20 12
Page # Offset
Virtual
Address
—
VIM|R|Prot| Page Frame #
i
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Quiz 1

How many 2'2-byte pages fit in a 32-bit address
space?

a) a little over a 1000

b) a little over a million

c) a little over a billion

d) none of the above
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VM is Your Friend ...

Not everything has to be in memory at once

— pages brought in (and pushed out) when needed

— unallocated parts of the address space consume no
memory

» e.g., hole between stack and dynamic areas

What’s mine is not YOUTIS (and vice versa)
— address spaces are disjoint

Sharing is ok though ...
— address spaces don’t have to be disjoint
» a single page frame may be mapped into multiple processes
| don’t trust you (or me)

— access to individual pages can be restricted
» read, write, execute, or any combination
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Page-Table Size

« Consider a full 23%2-byte address space
— assume 4096-byte (212-byte) pages
— 4 bytes per page-table entry
— the page table would consist of 232/212 (= 220) entries

— its size would be 222 bytes (or 4 megabytes)
» at $100/gigabyte
« around $0.40

* For a 2%*-byte address space
— assume 4096-byte (212-byte) pages
— 8 bytes per page-table entry
— the page table would consist of 264/212 (= 252) entries

— its size would be 2°° bytes (or 32 petabytes)
» at $1/gigabyte
« over $33 million
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IA32 Paging

CR3

10 bits 10 bits 12 bits
i’ |
Page directory Page table Page

table
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Quiz 2

Can a page start at a virtual address that’s not
divisible by the page size?

a) yes
b) no
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Linux Intel IA32 VM Layout
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x86-64 Virtual Address Format 1

63 47 38 29 20 11 0

unused

NI
M = v |
N — | | |
Page map :— k;

table N 1 =

Page = Ny

directory iy

pointer table dirpeigtc?r B
y Page table

table

4KB page
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x86-64 Virtual Address Format 2

63 47 38 29 20 0

unused

NI
M = v |
N — |
Page map :— k;
table o nl
Page i
directory
pointer table dirpeigtc?ry
table

2MB page
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x86-64 Virtual Address Format 3

63 47 38 29 0

unused /

Page map L]
table B

Page
directory
pointer table

1GB page
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Why Multiple Page Sizes?

 Fragmentation

— for region composed of 4KB pages, average
internal fragmentation is 2KB

— for region composed of 1GB pages, average
internal fragmentation is 512MB

- Page-table overhead

— larger page sizes have fewer page tables
» less overhead in representing mappings
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x86-64 Address Space

OxXffffffffffffffff —
OS kernel — 247 bytes
Oxf£££800000000000 =
OxXffff7£f£f££f££fffff N
lllegal — 264248 pytes
0x0000800000000000 =
Ox00007ff£fffffffff B
User — 2% bytes
0x0000000000000000 .
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Performance

« Page table resides in real memory (DRAM)

* A 32-bit virtual-to-real translation requires two
accesses to page tables, plus the access to
the ultimate real address

— three real accesses for each virtual access
— 3X slowdown!
* A 64-bit virtual-to-real translation requires

four accesses to page tables, plus the access
to the ultimate real address

— 5X slowdown!
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Translation Lookaside Buffers

Page Frame #
Page Frame #
Page Frame #

Page Frame #
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Quiz 3

Recall that there is a 5x slowdown on memory
references via virtual memory on the x86-64. If
all references are translated via the TLB, the
slowdown will be

a) .5x (i.e. it will be faster, not slower)
b) 1x
C) 2x
d) 3x
e) 4x
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OS Role in Virtual Memory

 Memory is like a cache

— quick access if what’s wanted is mapped via page
table

— slow if not — OS assistance required

« OS
— make sure what’s needed is mapped in

— make sure what’s no longer needed is not mapped
in

CS33 Intro to Computer Systems XXVII-32  Copyright © 2023 Thomas W. Doeppner. All rights reserved.



Mechanism

* Program references memory

— if reference is mapped, access is quick

» even quicker if translation in TLB and referent in on-
chip cache

— if not, page-translation fault occurs and OS is
invoked

» determines desired page
» maps it in, if legal reference
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The “Pageout Daemon”

Pageout
Daemon

—Disi—

In-Use Page Free Page
Frames Frames
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Managing Page Frames

VIM|R|Prot| Page Frame #
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Clock Algorithm

1
Back hand:
if (reference bit == 0)
remove page

A

\ Front hand.

reference bit =0

CS33 Intro to Computer Systems XXVII-36  Copyright © 2023 Thomas W. Doeppner. All rights reserved.



Why is virtual memory used?
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More VM than RM

Process

o
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Isolation
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Sharing

0
1 —
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File I/O

Buffer

User Process

Buffer Cache

CS33 Intro to Computer Systems

XXVII-41

Copyright © 2023 Thomas W. Doeppner. All rights reserved.



Multi-Buffered 1/O

Process

read( ... )

i-1 i i+1
previous current probable
block block next block
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Traditional I/O

1l: read f1, pO
3: read f1, pl
5: read £3, pO0

page 0

page 0

page 1

User Process 1

2:
4:

read £f2, pO0
read £f2, pl

5: read £3, pO0

page 0

page 0

page 1

User Process 2

page 0

page 1

page 0

page 1

page 0

Buffer Cache

Kernel Memory
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Mapped File I/O

\{ File 1
page 0 page 0 page 0
page 1 page 1
page 2 — page 2 page 2
page 3 . page 3 page 3
page 4 page 4
page 5 page 5 page 5
page 6 page 6
page 7 /f page 7 page 7

\I:;irrc’:ﬁzls:nlmory Real Memory Disk
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Multi-Process Mapped File I/O

page 0 \{ page 0
page 1
page 2 . page 2
)
page 3 g page 3
; /Qig
page 4 0 N e
page 5 page 5
page 6 page 6
7
page 7 /{ S
Real Memory
Process 2

Virtual Memorx
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Mapped Files

 Traditional File I/O

char buf [BigEnough];

fd = open(file, O RDWR);

for (i=0; i<n recs; 1i++) {
read (fd, buf, sizeof (buf));
use (buf) ;

)
 Mapped File I/O

record t *MappedFile;

fd = open(file, O RDWR);
MappedFile = mmap(... , fd, ...);
for (1=0; i<n recs; 1++)

use (MappedFile[1]) ;
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Mmap System Call

void *mmap (
void *addr,
// where to map file (0 if don’t care)
size t len,
// how much to map
int prot,
// memory protection (read, write, exec.)

int flags,

// shared vs. private, plus more
int fd,

// which file
off t off

// starting from where

) g
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The mmap System Call

[~

\.\/\

L2 Page L2 Page

L1 Page Tables Tables L1 Page
Table File Pages Table
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Share-Mapped Files

[~

\.\/\

L2 Page L2 Page
L1 Page Tables Tables L1 Page
Table File Pages Table
Data = 17;
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Private-Mapped Files

3

=N

L2 Page
L1 Page Tables
Table
Data = 17;

—
\ L2 Page
Tables L1 Page
F“\Y Pages Table
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Example

int main( ) {
int fd;
dataObject t *dataObjectp;

fd = open("file", O RDWR) ;

if ((int) (dataObjectp = (dataObject t *)mmap (0,
sizeof (dataObject t),
PROT_READIPROT_WRITE, MAP SHARED, fd, 0)) == -1) {
perror ("mmap") ;
exit (1) ;

}

// dataObjectp points to region of (virtual) memory
// containing the contents of the file
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fork and mmap

int main () { int main () {
int x=1; int fd = open( ... );
int *xp = (int *)mmap (...,
if (fork() == 0) { MAP SHARED, fd, ...);
// in child xp[0] = 1;
X = 2; if (fork() == 0) {
exit (0); // in child
} xp[0] = 2;
// in parent exit (0);
while (x==1) ({ }
// will loop forever // in parent
} while (xp[0]==1) {
return O; // will terminate
} }
return O;

}
XXVII-52
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