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CS 33
Storage Allocation (2)
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Adding a Block to the Free List (1)
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Adding a Block to the Free List (2)
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Accessing the Object
block_t *block_flink(block_t *b) {
  return (block_t *)b->payload[0];
}

void block_set_flink(block_t *b, block_t *next) {
  b->payload[0] = (size_t)next;
}

block_t *block_blink(block_t *b) {
  return (block_t *)b->payload[1];
}

void block_set_blink(block_t *b, block_t *next) {
  b->payload[1] = (size_t)next;
}
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Insertion Code
void insert_free_block(block_t *fb) {    
  assert(!block_allocated(fb));
  if (flist_first != NULL) {
    block_t *last =
      block_blink(flist_first);
    block_set_flink(fb, flist_first);
    block_set_blink(fb, last);
    block_set_flink(last, fb);
    block_set_blink(flist_first, fb);
  } else {
    block_set_flink(fb, fb);
    block_set_blink(fb, fb);
  }
  flist_first = fb;
}
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Performance

• Won’t all the calls to the accessor functions 
slow things down a lot?
– yes — not just a lot, but tons

• Why not use macros (#define) instead?
– the textbook does this
– it makes the code impossible to debug

» gdb shows only the name of the macro, not its body

• What to do????
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Inline Functions

static inline size_t block_size(
    block_t *b) {
  return b->size & -2;
}

– when debugging (–O0), the code is implemented as 
a normal function
» easy to debug with gdb

– when optimized (–O1, –O2), calls to the function are 
replaced with the body of the function
» no function-call overhead
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Prolog and Epilog

prev? next?

prolog epilog
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CS 33
Virtual Memory



CS33 Intro to Computer Systems XXVII–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

The Address-Space Concept

• Protect processes from one another
• Protect the OS from user processes
• Provide efficient management of available 

storage
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Memory Fence

User Area

OS
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Base and Bounds Registers
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Swapping

User Area

OS
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Overlays

Overlay
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Virtual Memory
Process 1

Process 2

Process 3

Memory

Disk
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Page Tables
Page # Offset

V M R Prot Page Frame #

Virtual
Address
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Quiz 1

How many 212-byte pages fit in a 32-bit address 
space?

a) a little over a 1000
b) a little over a million
c) a little over a billion
d) none of the above
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VM is Your Friend ...

• Not everything has to be in memory at once
– pages brought in (and pushed out) when needed
– unallocated parts of the address space consume no 

memory
» e.g., hole between stack and dynamic areas

• What’s mine is not yours (and vice versa)

– address spaces are disjoint
• Sharing is ok though ...

– address spaces don’t have to be disjoint
» a single page frame may be mapped into multiple processes

• I don’t trust you (or me)
– access to individual pages can be restricted

» read, write, execute, or any combination
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Page-Table Size
• Consider a full 232-byte address space

– assume 4096-byte (212-byte) pages
– 4 bytes per page-table entry
– the page table would consist of 232/212 (= 220) entries
– its size would be 222 bytes (or 4 megabytes)

» at $100/gigabyte
• around $0.40

• For a 264-byte address space
– assume 4096-byte (212-byte) pages
– 8 bytes per page-table entry
– the page table would consist of 264/212 (= 252) entries
– its size would be 255 bytes (or 32 petabytes)

» at $1/gigabyte
• over $33 million
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IA32 Paging

10 bits 10 bits 12 bits

Page directory
table

Page table Page

CR3
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Quiz 2

Can a page start at a virtual address that’s not 
divisible by the page size?

a) yes
b) no
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Linux Intel IA32 VM Layout
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x86-64 Virtual Address Format 1
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x86-64 Virtual Address Format 2
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x86-64 Virtual Address Format 3
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Why Multiple Page Sizes?

• Fragmentation
– for region composed of 4KB pages, average 

internal fragmentation is 2KB
– for region composed of 1GB pages, average 

internal fragmentation is 512MB
• Page-table overhead

– larger page sizes have fewer page tables
» less overhead in representing mappings



CS33 Intro to Computer Systems XXVII–28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

x86-64 Address Space

OS kernel

0xffffffffffffffff

0xffff800000000000

User

0x00007fffffffffff

0x0000000000000000

Illegal

0xffff7fffffffffff

0x0000800000000000

247 bytes

247 bytes

264 – 248 bytes
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Performance

• Page table resides in real memory (DRAM)
• A 32-bit virtual-to-real translation requires two 

accesses to page tables, plus the access to 
the ultimate real address
– three real accesses for each virtual access
– 3X slowdown!

• A 64-bit virtual-to-real translation requires 
four accesses to page tables, plus the access 
to the ultimate real address
– 5X slowdown!
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Translation Lookaside Buffers
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Quiz 3

Recall that there is a 5x slowdown on memory 
references via virtual memory on the x86-64. If 
all references are translated via the TLB, the 
slowdown will be

a) .5x (i.e. it will be faster, not slower)
b) 1x
c) 2x
d) 3x
e) 4x
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OS Role in Virtual Memory

• Memory is like a cache
– quick access if what’s wanted is mapped via page 

table
– slow if not — OS assistance required

• OS
– make sure what’s needed is mapped in
– make sure what’s no longer needed is not mapped 

in
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Mechanism

• Program references memory
– if reference is mapped, access is quick

» even quicker if translation in TLB and referent in on-
chip cache

– if not, page-translation fault occurs and OS is 
invoked
» determines desired page
» maps it in, if legal reference
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The “Pageout Daemon”
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Managing Page Frames

V M R Prot Page Frame #
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Clock Algorithm

Front hand:
reference bit = 0

Back hand:
if (reference bit == 0)
    remove page
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Why is virtual memory used?
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More VM than RM

Process

Memory

Disk
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Sharing
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File I/O

User Process
Buffer

Buffer Cache
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Multi-Buffered I/O

Process
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Traditional I/O
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Mapped File I/O

DiskReal MemoryProcess 1
Virtual Memory

page 0

page 1

page 2

page 3

page 4

page 5

page 6

page 7

File 1
page 0

page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 0

page 2

page 3

page 5

page 7



CS33 Intro to Computer Systems XXVII–45 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Multi-Process Mapped File I/O
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Mapped Files

• Traditional File I/O
char buf[BigEnough];
fd = open(file, O_RDWR);
for (i=0; i<n_recs; i++) {

read(fd, buf, sizeof(buf));
use(buf);

}

• Mapped File I/O
record_t *MappedFile;

fd = open(file, O_RDWR);

MappedFile = mmap(... , fd, ...);

for (i=0; i<n_recs; i++)

use(MappedFile[i]);
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Mmap System Call

void *mmap(
  void *addr,
    // where to map file (0 if don’t care)
  size_t len,
    // how much to map
  int prot,
    // memory protection (read, write, exec.)
  int flags,
    // shared vs. private, plus more
  int fd,
    // which file
  off_t off
    // starting from where
  );
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The mmap System Call
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Share-Mapped Files
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Private-Mapped Files
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Example
int main( ) {
 int fd;
 dataObject_t *dataObjectp;

 fd = open("file", O_RDWR);
 if ((int)(dataObjectp = (dataObject_t *)mmap(0,
      sizeof(dataObject_t),
     PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0)) == -1) {
   perror("mmap");
    exit(1);
 }

  // dataObjectp points to region of (virtual) memory
  // containing the contents of the file

  ...

}
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fork and mmap
int main() {
  int x=1;

  if (fork() == 0) {
    // in child

    x = 2;

    exit(0);
  } 

  // in parent

  while (x==1) {
    // will loop forever

  }

  return 0;
}

int main() {
  int fd = open( ... );
 int *xp = (int *)mmap(...,
      MAP_SHARED, fd, ...);

  xp[0] = 1;

  if (fork() == 0) {
    // in child
    xp[0] = 2;

    exit(0);

  } 
  // in parent

  while (xp[0]==1) {
    // will terminate

  }
  return 0;
}


