
CS33 Intro to Computer Systems XXVII–1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Storage Allocation (2)

CS33 Intro to Computer Systems XXVII–2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Adding a Block to the Free List (1)

Size 0

Size 0

flink
blink

Size 0

Size 0

flink
blink

Size 0

Size 0

flink
blink

flist_first

Size 0

Size 0

flink
blink

CS33 Intro to Computer Systems XXVII–3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Adding a Block to the Free List (2)

Size 0

Size 0

flink
blink

Size 0

Size 0

flink
blink

Size 0

Size 0

flink
blink

flist_first

Size 0

Size 0

flink
blink

CS33 Intro to Computer Systems XXVII–4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Accessing the Object
block_t *block_flink(block_t *b) {
 return (block_t *)b->payload[0];
}

void block_set_flink(block_t *b, block_t *next) {
 b->payload[0] = (size_t)next;
}

block_t *block_blink(block_t *b) {
 return (block_t *)b->payload[1];
}

void block_set_blink(block_t *b, block_t *next) {
 b->payload[1] = (size_t)next;
}

CS33 Intro to Computer Systems XXVII–5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Insertion Code
void insert_free_block(block_t *fb) {
 assert(!block_allocated(fb));
 if (flist_first != NULL) {
 block_t *last =
 block_blink(flist_first);
 block_set_flink(fb, flist_first);
 block_set_blink(fb, last);
 block_set_flink(last, fb);
 block_set_blink(flist_first, fb);
 } else {
 block_set_flink(fb, fb);
 block_set_blink(fb, fb);
 }
 flist_first = fb;
}

CS33 Intro to Computer Systems XXVII–6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Performance

• Won’t all the calls to the accessor functions
slow things down a lot?
– yes — not just a lot, but tons

• Why not use macros (#define) instead?
– the textbook does this
– it makes the code impossible to debug

» gdb shows only the name of the macro, not its body

• What to do????

CS33 Intro to Computer Systems XXVII–7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Inline Functions

static inline size_t block_size(
 block_t *b) {
 return b->size & -2;
}

– when debugging (–O0), the code is implemented as
a normal function
» easy to debug with gdb

– when optimized (–O1, –O2), calls to the function are
replaced with the body of the function
» no function-call overhead

CS33 Intro to Computer Systems XXVII–8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Prolog and Epilog

prev? next?

prolog epilog

CS33 Intro to Computer Systems XXVII–9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Virtual Memory

CS33 Intro to Computer Systems XXVII–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

The Address-Space Concept

• Protect processes from one another
• Protect the OS from user processes
• Provide efficient management of available

storage

CS33 Intro to Computer Systems XXVII–11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Memory Fence

User Area

OS

CS33 Intro to Computer Systems XXVII–12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Base and Bounds Registers

Base register

Base register

B
ounds

B
ounds

CS33 Intro to Computer Systems XXVII–13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Swapping

User Area

OS

CS33 Intro to Computer Systems XXVII–14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Overlays

Overlay

Resident

CS33 Intro to Computer Systems XXVII–15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Virtual Memory
Process 1

Process 2

Process 3

Memory

Disk

CS33 Intro to Computer Systems XXVII–16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Memory Maps
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

i
2
i
i
0
1
i
i
i
i
i
i
3
i
i
i

0
1
2
3

Disk

Virtual Memory

Real Memory

Memory Map
(page table)

pages

page
frames

CS33 Intro to Computer Systems XXVII–17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Page Tables
Page # Offset

V M R Prot Page Frame #

Virtual
Address

20 12

CS33 Intro to Computer Systems XXVII–18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1

How many 212-byte pages fit in a 32-bit address
space?

a) a little over a 1000
b) a little over a million
c) a little over a billion
d) none of the above

CS33 Intro to Computer Systems XXVII–19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

VM is Your Friend ...

• Not everything has to be in memory at once
– pages brought in (and pushed out) when needed
– unallocated parts of the address space consume no

memory
» e.g., hole between stack and dynamic areas

• What’s mine is not yours (and vice versa)

– address spaces are disjoint
• Sharing is ok though ...

– address spaces don’t have to be disjoint
» a single page frame may be mapped into multiple processes

• I don’t trust you (or me)
– access to individual pages can be restricted

» read, write, execute, or any combination

CS33 Intro to Computer Systems XXVII–20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Page-Table Size
• Consider a full 232-byte address space

– assume 4096-byte (212-byte) pages
– 4 bytes per page-table entry
– the page table would consist of 232/212 (= 220) entries
– its size would be 222 bytes (or 4 megabytes)

» at $100/gigabyte
• around $0.40

• For a 264-byte address space
– assume 4096-byte (212-byte) pages
– 8 bytes per page-table entry
– the page table would consist of 264/212 (= 252) entries
– its size would be 255 bytes (or 32 petabytes)

» at $1/gigabyte
• over $33 million

CS33 Intro to Computer Systems XXVII–21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

IA32 Paging

10 bits 10 bits 12 bits

Page directory
table

Page table Page

CR3

CS33 Intro to Computer Systems XXVII–22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2

Can a page start at a virtual address that’s not
divisible by the page size?

a) yes
b) no

CS33 Intro to Computer Systems XXVII–23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Linux Intel IA32 VM Layout

user

kernel

0

3GB

4GB

Page directory
table

CS33 Intro to Computer Systems XXVII–24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

x86-64 Virtual Address Format 1

unused

0112029384763

Page map
table

Page
directory

pointer table Page
directory

table Page table

4KB page

CS33 Intro to Computer Systems XXVII–25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

x86-64 Virtual Address Format 2

unused

02029384763

Page map
table

Page
directory

pointer table Page
directory

table
2MB page

CS33 Intro to Computer Systems XXVII–26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

x86-64 Virtual Address Format 3

unused

029384763

Page map
table

Page
directory

pointer table

1GB page

CS33 Intro to Computer Systems XXVII–27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Why Multiple Page Sizes?

• Fragmentation
– for region composed of 4KB pages, average

internal fragmentation is 2KB
– for region composed of 1GB pages, average

internal fragmentation is 512MB
• Page-table overhead

– larger page sizes have fewer page tables
» less overhead in representing mappings

CS33 Intro to Computer Systems XXVII–28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

x86-64 Address Space

OS kernel

0xffffffffffffffff

0xffff800000000000

User

0x00007fffffffffff

0x0000000000000000

Illegal

0xffff7fffffffffff

0x0000800000000000

247 bytes

247 bytes

264 – 248 bytes

CS33 Intro to Computer Systems XXVII–29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Performance

• Page table resides in real memory (DRAM)
• A 32-bit virtual-to-real translation requires two

accesses to page tables, plus the access to
the ultimate real address
– three real accesses for each virtual access
– 3X slowdown!

• A 64-bit virtual-to-real translation requires
four accesses to page tables, plus the access
to the ultimate real address
– 5X slowdown!

CS33 Intro to Computer Systems XXVII–30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Translation Lookaside Buffers

Tag Key Offset
14 6 12

Tag Page Frame #Tag Page Frame #

Tag Page Frame #Tag Page Frame #

Tag Page Frame #Tag Page Frame #

Tag Page Frame #Tag Page Frame #

...
...

CS33 Intro to Computer Systems XXVII–31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 3

Recall that there is a 5x slowdown on memory
references via virtual memory on the x86-64. If
all references are translated via the TLB, the
slowdown will be

a) .5x (i.e. it will be faster, not slower)
b) 1x
c) 2x
d) 3x
e) 4x

CS33 Intro to Computer Systems XXVII–32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

OS Role in Virtual Memory

• Memory is like a cache
– quick access if what’s wanted is mapped via page

table
– slow if not — OS assistance required

• OS
– make sure what’s needed is mapped in
– make sure what’s no longer needed is not mapped

in

CS33 Intro to Computer Systems XXVII–33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Mechanism

• Program references memory
– if reference is mapped, access is quick

» even quicker if translation in TLB and referent in on-
chip cache

– if not, page-translation fault occurs and OS is
invoked
» determines desired page
» maps it in, if legal reference

CS33 Intro to Computer Systems XXVII–34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

The “Pageout Daemon”

In-Use Page
Frames

Free Page
Frames

Pageout
Daemon

Disk

CS33 Intro to Computer Systems XXVII–35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Managing Page Frames

V M R Prot Page Frame #

CS33 Intro to Computer Systems XXVII–36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Clock Algorithm

Front hand:
reference bit = 0

Back hand:
if (reference bit == 0)
 remove page

CS33 Intro to Computer Systems XXVII–37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Why is virtual memory used?

CS33 Intro to Computer Systems XXVII–38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

More VM than RM

Process

Memory

Disk

CS33 Intro to Computer Systems XXVII–39 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Isolation
0
1
2
3
4
5

0
1
2
3
4
5

i
2
i
i
0
1

i
i
3
i
5
7

0
1
2
3

Virtual Memory

Real Memory

Memory Maps
(page tables)

page
frames4

5
6
7

Process 1

Process 2

CS33 Intro to Computer Systems XXVII–40 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Sharing
0
1
2
3
4
5

0
1
2
3
4
5

1
2
i
i
0
1

i
1
3
i
5
7

0
1
2
3

Virtual Memory

Real Memory

Memory Maps
(page tables)

page
frames4

5
6
7

Process 1

Process 2

CS33 Intro to Computer Systems XXVII–41 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

File I/O

User Process
Buffer

Buffer Cache

CS33 Intro to Computer Systems XXVII–42 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Multi-Buffered I/O

Process

read(…)

i-1 i i+1
previous

block
current
block

probable
next block

CS33 Intro to Computer Systems XXVII–43 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Traditional I/O

page 0

page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 0

page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 0

page 1

page 2

page 3

page 4

page 5

page 6

page 7

File 1
File 2

File 3

DiskKernel Memory

1: read f1, p0
3: read f1, p1
5: read f3, p0

2: read f2, p0
4: read f2, p1
5: read f3, p0

page 0

page 0

page 1

page 1

page 0

page 0

page 0

page 1

page 1

page 0

page 0

User Process 1

User Process 2

Buffer Cache

CS33 Intro to Computer Systems XXVII–44 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Mapped File I/O

DiskReal MemoryProcess 1
Virtual Memory

page 0

page 1

page 2

page 3

page 4

page 5

page 6

page 7

File 1
page 0

page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 0

page 2

page 3

page 5

page 7

CS33 Intro to Computer Systems XXVII–45 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Multi-Process Mapped File I/O

DiskReal Memory

page 0

page 1

page 2

page 3

page 4

page 5

page 6

page 7

File 1
page 0

page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 0

page 2

page 3

page 5

page 7

Process 2
Virtual Memory

page 0

page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 6

CS33 Intro to Computer Systems XXVII–46 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Mapped Files

• Traditional File I/O
char buf[BigEnough];
fd = open(file, O_RDWR);
for (i=0; i<n_recs; i++) {

read(fd, buf, sizeof(buf));
use(buf);

}

• Mapped File I/O
record_t *MappedFile;

fd = open(file, O_RDWR);

MappedFile = mmap(... , fd, ...);

for (i=0; i<n_recs; i++)

use(MappedFile[i]);

CS33 Intro to Computer Systems XXVII–47 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Mmap System Call

void *mmap(
 void *addr,
 // where to map file (0 if don’t care)
 size_t len,
 // how much to map
 int prot,
 // memory protection (read, write, exec.)
 int flags,
 // shared vs. private, plus more
 int fd,
 // which file
 off_t off
 // starting from where
);

CS33 Intro to Computer Systems XXVII–48 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

The mmap System Call

L1 Page
Table

L2 Page
Tables L1 Page

Table

L2 Page
Tables

File Pages

CS33 Intro to Computer Systems XXVII–49 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Share-Mapped Files

L1 Page
Table

L2 Page
Tables L1 Page

Table

L2 Page
Tables

File Pages

Data = 17;

CS33 Intro to Computer Systems XXVII–50 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Private-Mapped Files

L1 Page
Table

L2 Page
Tables L1 Page

Table

L2 Page
Tables

File Pages

Data = 17;

CS33 Intro to Computer Systems XXVII–51 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Example
int main() {
 int fd;
 dataObject_t *dataObjectp;

 fd = open("file", O_RDWR);
 if ((int)(dataObjectp = (dataObject_t *)mmap(0,
 sizeof(dataObject_t),
 PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0)) == -1) {
 perror("mmap");
 exit(1);
 }

 // dataObjectp points to region of (virtual) memory
 // containing the contents of the file

 ...

}

CS33 Intro to Computer Systems XXVII–52 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

fork and mmap
int main() {
 int x=1;

 if (fork() == 0) {
 // in child

 x = 2;

 exit(0);
 }

 // in parent

 while (x==1) {
 // will loop forever

 }

 return 0;
}

int main() {
 int fd = open(...);
 int *xp = (int *)mmap(...,
 MAP_SHARED, fd, ...);

 xp[0] = 1;

 if (fork() == 0) {
 // in child
 xp[0] = 2;

 exit(0);

 }
 // in parent

 while (xp[0]==1) {
 // will terminate

 }
 return 0;
}

