
CS33 Intro to Computer Systems XXVIII–1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Virtual Memory (2)

CS33 Intro to Computer Systems XXVIII–2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

OS Role in Virtual Memory

• Memory is like a cache
– quick access if what’s wanted is mapped via page

table
– slow if not — OS assistance required

• OS
– make sure what’s needed is mapped in
– make sure what’s no longer needed is not mapped

in

CS33 Intro to Computer Systems XXVIII–3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Mechanism

• Program references memory
– if reference is mapped, access is quick

» even quicker if translation in TLB and referent in on-
chip cache

– if not, page-translation fault occurs and OS is
invoked
» determines desired page
» maps it in, if legal reference

The (kernel) thread that maintains the free page-frame list is typically called the pageout
daemon. Its job is to make certain that the free page-frame list has enough page frames
on it. If the size of the list drops below some threshold, then the pageout daemon
examines those page frames that are being used and selects a number of them to be
freed. Before freeing a page, it must make certain that a copy of the current contents of
the page exists on secondary storage. So, if the page has been modified since it was
brought into primary storage (easily determined by the hardware-supported modified
bit), it must first be written out to secondary storage. In many systems, the pageout
daemon groups such pageouts into batches, so that a number of pages can be written
out in a single operation, thus saving disk time. Unmodified, selected pages are
transferred directly to the free page-frame list, modified pages are put there after they
have been written out.

In most systems, pages in the free list get a “second chance” — if a thread in a process
references such a page, there is a page fault (the page frame has been freed and could
be used to hold another page), but the page-fault handler checks to see if the desired
page is still in primary storage, but in the free list. If it is in the free list, it is removed
and given back to the faulting process. We still suffer the overhead of a trap, but there is
no wait for I/O.

CS33 Intro to Computer Systems XXVIII–4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

The “Pageout Daemon”

In-Use Page
Frames

Free Page
Frames

Pageout
Daemon

Disk

The OS can keep track of the history of page frame by use of two bits in each page-table
entry: the modify bit, which is set by hardware whenever the associated page frame is
modified, and the referenced bit, which is set by hardware whenever the associated page
is accessed (via either a load or a store).

CS33 Intro to Computer Systems XXVIII–5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Managing Page Frames

V M R Prot Page Frame #

A common approach for determining which page frames are not in use is known as the
clock algorithm. All active page frames are conceptually arranged in a circularly linked
list. The page-out thread slowly traverses the list. The “one-handed” version of the clock
algorithm, each time it encounters a page, checks the reference bit in the corresponding
translation entry: if the bit is set, it clears it. If the bit is clear, it adds the page to the
free list (writing it back to secondary storage first, if necessary).

A problem with the one-handed version is that, in systems with large amounts of
primary storage, it might take too long for the page-out thread to work its way all around
the list of page frames before it can recognize that a page has not been recently
referenced. In the two-handed version of the clock algorithm, the page-out thread
implements a second hand some distance behind the first. The front hand simply clears
reference bits. The second (back) hand removes those pages whose reference bits have
not been set to one by the time the hand reaches the page frame.

CS33 Intro to Computer Systems XXVIII–6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Clock Algorithm

Front hand:
reference bit = 0

Back hand:
if (reference bit == 0)
 remove page

CS33 Intro to Computer Systems XXVIII–7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Why is virtual memory used?

CS33 Intro to Computer Systems XXVIII–8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

More VM than RM

Process

Memory

Disk

CS33 Intro to Computer Systems XXVIII–9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Isolation
0
1
2
3
4
5

0
1
2
3
4
5

i
2
i
i
0
1

i
i
3
i
5
7

0
1
2
3

Virtual Memory

Real Memory

Memory Maps
(page tables)

page
frames4

5
6
7

Process 1

Process 2

CS33 Intro to Computer Systems XXVIII–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Sharing
0
1
2
3
4
5

0
1
2
3
4
5

1
2
i
i
0
1

i
1
3
i
5
7

0
1
2
3

Virtual Memory

Real Memory

Memory Maps
(page tables)

page
frames4

5
6
7

Process 1

Process 2

File I/O in Unix, and in most operating systems, is not done directly to the disk drive,
but through intermediary buffers, known as the buffer cache, in the operating system’s
address space. This cache has two primary functions. The first, and most important, is
to make possible concurrent I/O and computation within a Unix process. The second is
to insulate the user from physical disk-block boundaries.

From a user process’s point of view, I/O is synchronous. By this we mean that when
the I/O system call returns, the system no longer needs the user-supplied buffer. For
example, after a write system call, the data in the user buffer has either been
transmitted to the device or copied to a kernel buffer — the user can now scribble over
the buffer without affecting the data transfer. Because of this synchronization, from a
user process’s point of view, no more than one I/O operation can be in progress at a
time.
The buffer cache provides a kernel implementation of multibuffered I/O, and thus
concurrent I/O and computation are made possible.

CS33 Intro to Computer Systems XXVIII–11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

File I/O

User Process
Buffer

Buffer Cache

The use of read-aheads and write-behinds makes possible concurrent I/O and
computation: if the block currently being fetched is block i and the previous block
fetched was block i-1, then block i+1 is also fetched. Modified blocks are normally
written out not synchronously but instead sometime after they were modified,
asynchronously.

CS33 Intro to Computer Systems XXVIII–12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Multi-Buffered I/O

Process

read(…)

i-1 i i+1
previous

block
current
block

probable
next block

CS33 Intro to Computer Systems XXVIII–13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Traditional I/O

page 0

page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 0

page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 0

page 1

page 2

page 3

page 4

page 5

page 6

page 7

File 1
File 2

File 3

DiskKernel Memory

1: read f1, p0
3: read f1, p1
5: read f3, p0

2: read f2, p0
4: read f2, p1
5: read f3, p0

page 0

page 0

page 1

page 1

page 0

page 0

page 0

page 1

page 1

page 0

page 0

User Process 1

User Process 2

Buffer Cache

CS33 Intro to Computer Systems XXVIII–14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Mapped File I/O

DiskReal MemoryProcess 1
Virtual Memory

page 0

page 1

page 2

page 3

page 4

page 5

page 6

page 7

File 1
page 0

page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 0

page 2

page 3

page 5

page 7

CS33 Intro to Computer Systems XXVIII–15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Multi-Process Mapped File I/O

DiskReal Memory

page 0

page 1

page 2

page 3

page 4

page 5

page 6

page 7

File 1
page 0

page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 0

page 2

page 3

page 5

page 7

Process 2
Virtual Memory

page 0

page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 6

Traditional I/O involves explicit calls to read and write, which in turn means that data
is accessed via a buffer; in fact, two buffers are usually employed: data is transferred
between a user buffer and a kernel buffer, and between the kernel buffer and the I/O
device.

An alternative approach is to map a file into a process’s address space: the file
provides the data for a portion of the address space and the kernel’s virtual-memory
system is responsible for the I/O. A major benefit of this approach is that data is
transferred directly from the device to where the user needs it; there is no need for an
extra system buffer.

CS33 Intro to Computer Systems XXVIII–16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Mapped Files

• Traditional File I/O
char buf[BigEnough];
fd = open(file, O_RDWR);
for (i=0; i<n_recs; i++) {

read(fd, buf, sizeof(buf));
use(buf);

}

• Mapped File I/O
record_t *MappedFile;

fd = open(file, O_RDWR);
MappedFile = mmap(... , fd, ...);

for (i=0; i<n_recs; i++)

use(MappedFile[i]);

Mmap maps the file given by fd, starting at position off, for len bytes, into the caller’s address
space starting at location addr

• len is rounded up to a multiple of the page size
• off must be page-aligned
• if addr is zero, the kernel assigns an address
• if addr is positive, it is a suggestion to the kernel as to where the mapped file should be

located (it usually will be aligned to a page). However, if flags includes MAP_FIXED, then
addr is not modified by the kernel (and if its value is not reasonable, the call fails)

• the call returns the address of the beginning of the mapped file

The flags argument must include either MAP_SHARED or MAP_PRIVATE (but not both). If it’s
MAP_SHARED, then the mapped portion of the caller’s address space contains the current
contents of the file; when the mapped portion of the address space is modified by the process, the
corresponding portion of the file is modified.

However, if flags includes MAP_PRIVATE, then the idea is that the mapped portion of the address
space is initialized with the contents of the file, but that changes made to the mapped portion of
the address space by the process are private and not written back to the file. The details are a bit
complicated: as long as the mapping process does not modify any of the mapped portion of the
address space, the pages contained in it contain the current contents of the corresponding pages
of the file. However, if the process modifies a page, then that particular page no longer contains the
current contents of the corresponding file page, but contains whatever modifications are made to it
by the process. These changes are not written back to the file and not shared with any other
process that has mapped the file. It’s unspecified what the situation is for other pages in the
mapped region after one of them is modified. Depending on the implementation, they might
continue to contain the current contents of the corresponding pages of the file until they,
themselves, are modified. Or they might also be treated as if they’d just been written to and thus

CS33 Intro to Computer Systems XXVIII–17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Mmap System Call

void *mmap(
 void *addr,
 // where to map file (0 if don’t care)
 size_t len,
 // how much to map
 int prot,
 // memory protection (read, write, exec.)
 int flags,
 // shared vs. private, plus more
 int fd,
 // which file
 off_t off
 // starting from where
);

no longer be shared with others.

The mmap system call maps a file into a process’s address space. All processes mapping
the same file can share the pages of the file.

CS33 Intro to Computer Systems XXVIII–18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

The mmap System Call

L1 Page
Table

L2 Page
Tables L1 Page

Table

L2 Page
Tables

File Pages

Here, Data is a variable located in the highlighted file page.

There are a couple options for how modifications to mmapped files are dealt with. The
most straightforward is the share option in which changes to mmapped file pages modify
the file and hence the changes are seen by the other processes who have share-mapped
the file.

Hence, the change to Data is seen by both processes mapping the file.

CS33 Intro to Computer Systems XXVIII–19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Share-Mapped Files

L1 Page
Table

L2 Page
Tables L1 Page

Table

L2 Page
Tables

File Pages

Data = 17;

The other option is to private-map the file: changes made to mmapped file pages do not
modify the file. Instead, when a page of a file is first modified via a private mapping, a
copy of just that page is made for the modifying process, but this copy is not seen by
other processes, nor does it appear in the file.

In the slide, the process on the left has private-mapped the file. Thus, its changes to
Data (in the private-mapped portion of the address space) are made to a copy of the page
containing Data. Thus, the other process will continue to see the original Data.

CS33 Intro to Computer Systems XXVIII–20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Private-Mapped Files

L1 Page
Table

L2 Page
Tables L1 Page

Table

L2 Page
Tables

File Pages

Data = 17;

Here we map the contents of a file containing a dataObject_t into the caller’s address
space, allowing it both read and write access. Note mapping the file into memory does
not cause any immediate I/O to take place. The operating system will perform the I/O
when necessary, according to its own rules.

CS33 Intro to Computer Systems XXVIII–21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Example
int main() {
 int fd;
 dataObject_t *dataObjectp;

 fd = open("file", O_RDWR);
 if ((int)(dataObjectp = (dataObject_t *)mmap(0,
 sizeof(dataObject_t),
 PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0)) == -1) {
 perror("mmap");
 exit(1);
 }

 // dataObjectp points to region of (virtual) memory
 // containing the contents of the file

 ...

}

When a process calls fork and creates a child, the child’s address space is normally a
copy of the parent’s. Thus changes made by the child to its address space will not be
seen in the parent’s address space (as shown in the left-hand column). However, if there
is a region in the parent’s address space that has been mmapped using the
MAP_SHARED flag, and subsequently the parent calls fork and creates a child, the
mmapped region is not copied but is shared by parent and child. Thus changes to the
region made by the child will be seen by the parent (and vice versa).

CS33 Intro to Computer Systems XXVIII–22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

fork and mmap
int main() {
 int x=1;

 if (fork() == 0) {
 // in child
 x = 2;
 exit(0);
 }
 // in parent
 while (x==1) {
 // will loop forever
 }
 return 0;
}

int main() {
 int fd = open(...);
 int *xp = (int *)mmap(...,
 MAP_SHARED, fd, ...);
 xp[0] = 1;
 if (fork() == 0) {
 // in child
 xp[0] = 2;
 exit(0);
 }
 // in parent
 while (xp[0]==1) {
 // will terminate
 }
 return 0;
}

The source code used in this lecture, as well as some additional related source code, is
on the course web page.

CS33 Intro to Computer Systems XXVIII–23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Network Programming (1)

CS33 Intro to Computer Systems XXVIII–24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Communicating Over the Internet

Internet

CS33 Intro to Computer Systems XXVIII–25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

The Internet

CS33 Intro to Computer Systems XXVIII–26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Names and Addresses

• cslab1c.cs.brown.edu
– the name of a computer on the internet
– mapped to an internet address

• nytimes.com
– the name of a website
– mapped to a number of internet addresses

• How are names mapped to addresses?
– domain name service (DNS): a distributed database

• How are the machines corresponding to
internet addresses found?
– with the aid of various routing protocols

CS33 Intro to Computer Systems XXVIII–27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Internet Addresses

• IP (internet protocol) address
– one per network interface
– 32 bits (IPv4)

» 5527 per acre of RI
» 25 per acre of Texas

– 128 bits (IPv6)
» 1.6 billion per cubic mile of a sphere whose radius is

the mean distance from the Sun to the (former) planet
Pluto

• Port number
– one per service instance per machine
– 16 bits

» port numbers less than 1024 are reserved for
privileged applications

CS33 Intro to Computer Systems XXVIII–28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Notation

• Addresses (assume IPv4: 32-bit addresses)
– written using dot notation

» 128.48.37.1
• dots separate bytes

– address plus port (1426):
» 128.48.37.1:1426

CS33 Intro to Computer Systems XXVIII–29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Reliability

• Two possibilities
– don’t worry about it

» just send it
• if it arrives at its destination, that’s good!

–no verification
– worry about it

» keep track of what’s been successfully
communicated
• receiver “acks”

» retransmit until
• data is received
or
• it appears that “the network is down”

CS33 Intro to Computer Systems XXVIII–30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Reliability vs. Unreliability

• Reliable communication
– good for

» email
» texting
» distributed file systems
» web pages

– bad for
» streaming audio
» streaming video a little noise is better than a long pause

CS33 Intro to Computer Systems XXVIII–31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

The Data Abstraction

• Byte stream
– sequence of bytes

» as in pipes
– any notion of a larger data aggregate is the

responsibility of the programmer
• Discrete records

– sequence of variable-size “records”
– boundaries between records maintained
– receiver receives discrete records, as sent by

sender

CS33 Intro to Computer Systems XXVIII–32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

What’s Supported

• Stream
– byte-stream data abstraction
– reliable transmission

• Datagram
– discrete-record data abstraction
– unreliable transmission

CS33 Intro to Computer Systems XXVIII–33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1

The following code is used to transmit data
over a reliable byte-stream communication
channel. Assume sizeof(data) is large.

// sender
record_t data=getData();
write(fd, &data,
 sizeof(data));

// receiver
read(fd, &data,
 sizeof(data));
useData(data);

Does it work?
a) always
b) always, assuming no network problems
c) sometimes
d) never

Sockets are the abstraction of the communication path. An application sets up a socket
as the basis for communication. It refers to it via a file descriptor.

CS33 Intro to Computer Systems XXVIII–34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Sockets

Comm.
MechanismSocket Socket

• You tell the system what you want by
setting up the socket

• The system deals with all the other
details

We focus strictly on the internet domain.

CS33 Intro to Computer Systems XXVIII–35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Socket Parameters

• Styles of communication:
– stream: reliable, two-way byte streams
– datagram: unreliable, two-way record-oriented
– and others

• Communication domains
– UNIX

» endpoints (sockets) named with file-system pathnames
» supports stream and datagram
» trivial protocols: strictly for intra-machine use

– Internet
» endpoints named with IP addresses
» supports stream and datagram

– others
• Protocols

– the means for communicating data
– e.g., TCP/IP, UDP/IP

CS33 Intro to Computer Systems XXVIII–36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Setting Things Up
• Socket (communication endpoint) is set up
• Datagram communication

– use sendto system call to send data to named
recipient

– use recvfrom system call to receive data and name
of sender

• Stream communication
– client connects to server

» server uses listen and accept system calls to receive
connections

» client uses connect system call to make connections
– data transmitted using send or write system calls
– data received using recv or read system calls

CS33 Intro to Computer Systems XXVIII–37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Socket Addresses

• struct sockaddr
– represents a network address
– many sorts

» we use struct sockaddr_in
– we can ignore the details

» embedded in layers of software

• getaddrinfo()
– function used to obtain struct sockaddrʼs

The general idea of using getaddrinfo is that you supply the name of the host you’d like
to contact (node), which service on that host (service), and a description of how you’d
like to communicate (hints). It returns a list of possible means for contacting the server
in the form of a list of addrinfo structures (res). If the node argument is neither NULL
nor the name of the local machine, getaddrinfo looks up what it needs in the domain
name service (DNS) – the internet-wide distributed name service.

CS33 Intro to Computer Systems XXVIII–38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

getaddrinfo()

• int getaddrinfo(
 const char *node,
 const char *service,
 const struct addrinfo *hints,
 struct addrinfo **res);

– node is the host you want to look up (NULL for the machine
you are on)

– service is the service on that host (may be supplied as a
port number)

– hints are additional information describing what you want
– res is a list of struct sockaddr containing the results of the

search

Here we begin an example of a simple UDP server that receives messages from clients,
prints them along with an indication of who sent the message, and politely responds.

In this first slide we check that we're invoked correctly (the command line should
include the port number we're expecting to receive messages on) and have some initial
declarations.

CS33 Intro to Computer Systems XXVIII–39 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

UDP Server (1)

int main(int argc, char *argv[]) {
 if (argc != 2) {
 fprintf(stderr, "Usage: server port\n");
 exit(1);
 }
 int udp_socket;
 struct addrinfo udp_hints;
 struct addrinfo *result;

The next step is to set up an address for our socket so that clients can contact us. In the
hints structure, which we initialize to zeroes so that components we don't set are zero,
we specify that we're using IPv4 (AF_INET), that we are using datagrams (which, over
IPv4, means UDP). Setting the flags to AI_PASSIVE is a bit of magic that allows the
server to receive messages from multiple sources.

We call getaddrinfo to get an appropriate address to bind to our socket (next slide). Its
first (name) argument is NULL, which means that we want the address of the machine
we're on. Note the use of gai_strerror to produce an error message given an error return
from getaddrinfo.

CS33 Intro to Computer Systems XXVIII–40 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

UDP Server (2)

memset(&udp_hints, 0, sizeof(udp_hints));
 udp_hints.ai_family = AF_INET;
 udp_hints.ai_socktype = SOCK_DGRAM;
 udp_hints.ai_flags = AI_PASSIVE;

 int err;
 if ((int err = getaddrinfo(NULL, argv[1],
 &udp_hints, &result)) != 0) {
 fprintf(stderr,"%s\n", gai_strerror(err));
 exit(1);
 }

Next, we iterate over the output of getaddrinfo (the list pointed to by its result
argument). Though the length of this list is normally exactly one, it could be greater than
one if our computer has multiple network interfaces. (The length could also be zero if it
has no network interfaces, or none of the right sort.)

We try to create a socket that matches our desired socket type. Assuming we get the
socket (which is referred to by the file descriptor udp_socket), we then try to bind it to
the address returned by getaddrinfo. If all this works, we assume we're good to go.
Otherwise, we try the next address in the list, if there are any more.

CS33 Intro to Computer Systems XXVIII–41 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

UDP Server (3)

struct addrinfo *r;
 for (r = result; r != NULL; r = r->ai_next) {
 if ((udp_socket =
 socket(r->ai_family, r->ai_socktype,
 r->ai_protocol)) < 0) {
 continue;
 }
 if (bind(udp_socket, r->ai_addr, r->ai_addrlen) >= 0) {
 break;
 }
 close(udp_socket);
 }

If we couldn't find anything that worked, we terminate the program. Otherwise, we free
up the list of addresses, since we don't need them anymore. Note the use of
freeaddrinfo for this purpose.

CS33 Intro to Computer Systems XXVIII–42 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

UDP Server (4)

if (r == NULL) {
 fprintf(stderr, "Could not bind to %s\n", argv[1]);
 exit(1);
 }

 freeaddrinfo(result);

Now that we've set up a socket and bound it to an address that clients can send
messages to, we enter a loop to deal with all the incoming messages.

CS33 Intro to Computer Systems XXVIII–43 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

UDP Server (5)

while (1) {
 char buf[1024];
 struct sockaddr from_addr;
 int from_len = sizeof(struct sockaddr);
 int msg_size;

We call recfrom (which is just like read, but with extra arguments) to get the next
message from a client. The fourth argument could specify some flags, but we don't need
any here (or in the networking lab). The fourth and fifth arguments, if not zeroes, give an
address of memory to receive the network name of the caller, as well as its length. The
length argument serves two purposes: on entry to the function, it indicates how much
memory we have to receive the network address. On return from the function, it tells us
how many bytes were actually used.

Note that we put a zero at the end of buf, so we can safely print it (next slide).

CS33 Intro to Computer Systems XXVIII–44 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

UDP Server (6)

/* receive message from client */
 if ((msg_size = recvfrom(udp_socket, buf, 1024, 0,
 (struct sockaddr *)&from_addr, &from_len)) < 0) {
 perror("recvfrom");
 exit(1);
 }
 buf[msg_size] = 0;

Next we print out who the client was and what its message was. The function
getnameinfo is sort of the inverse of getaddrinfo: given a struct sockaddr (as produced
by recvfrom), it tells us the name of the machine and the service requested (or port
number). We then print the name of the machine, the service name (or port number),
and the message itself. Note the use of gai_strerror for interpreting an error return from
getnameinfo.

CS33 Intro to Computer Systems XXVIII–45 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

UDP Server (7)

char host_name[256];
 char serv_name[256];
 if ((err = getnameinfo((struct sockaddr *)&from_addr,
 from_len, host_name, sizeof(host_name),
 serv_name, sizeof(serv_name), 0))) {
 fprintf(stderr, "%s/n", gai_strerror(err));
 exit(1);
 }
 printf("message from %s port %s:\n%s\n",
 host_name, serv_name, buf);

Finally, to be polite, we send a response to the client, thanking it for its message. The
function sendto is like write, but with extra arguments. As with recvfrom, we set the
flags argument (4th) to zero, but the next two arguments indicate whom we're sending
the message to (the client, in this case).

CS33 Intro to Computer Systems XXVIII–46 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

UDP Server (8)

/* respond to client */
 if (sendto(udp_socket, "thank you", 9, 0,
 (const struct sockaddr *)&from_addr,
 from_len) < 0) {
 perror("sendto");
 exit(1);
 }
 }
}

Now we look at the code for a client that communicates with our UDP server. Note that
the command line of the client specifies both the host the server is on, as well as the
port number. If the server is on the same host as the client, host may be specified as
"localhost".

CS33 Intro to Computer Systems XXVIII–47 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

UDP Client (1)

int main(int argc, char *argv[]) {
 int s;
 int sock;
 struct addrinfo hints;
 struct addrinfo *result;
 struct addrinfo *rp;

 if (argc != 3) {
 fprintf(stderr, "Usage: client host port\n");
 exit(1);
 }

We start by looking up the internet address of the server. To do this, we first fill in the
hints structure to make it clear that we want a server with an internet (IPv4) interface
and that we want UDP (datagrams). We call getaddrinfo to get a list of addresses. Again,
note the use of gai_strerror to give us an error message.

Unlike what we did for the server code, we supply a non-null first argument to
getaddrinfo, indicating which server we want to communicate with.

CS33 Intro to Computer Systems XXVIII–48 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

UDP Client (2)

// Step 1: find the internet address of the server
 memset(&hints, 0, sizeof(hints));
 hints.ai_family = AF_INET;
 hints.ai_socktype = SOCK_DGRAM;

 if ((s=getaddrinfo(argv[1], argv[2], &hints,
 &result)) != 0) {
 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));
 exit(1);
 }

Next, we go through the addresses returned by getaddrinfo and use the first one for
which we can successfully set up a socket. The list's length is usually one, and that one
usually works.

We free up list (by calling freeaddrinfo) since we no longer need it.

CS33 Intro to Computer Systems XXVIII–49 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

UDP Client (3)

// Step 2: set up socket for UDP
 for (rp = result; rp != NULL; rp - rp->ai_next) {
 if ((sock = socket(rp->ai_family, rp->ai_socktype,
 rp->ai_protocol)) >= 0) {
 break;
 }
 }
 if (rp == NULL) {
 fprintf(stderr, "Could not communicate with %s\n",
 argv[1]);
 exit(1);
 }
 freeaddrinfo(result);

Next, we call our communicate function that will exchange messages with the server
(although we don't know yet whether the server is up and running).

CS33 Intro to Computer Systems XXVIII–50 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

UDP Client (4)

// Step 3: communicate with server
 communicate(sock, rp);

 return 0;

}

In our communicate function, we first read a line from stdin (which will be sent to the
server).

CS33 Intro to Computer Systems XXVIII–51 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

UDP Client (5)

int communicate(int fd, struct addrinfo *rp) {
 while (1) {
 char buf[1024];
 int msg_size;

 if (fgets(buf, 1024, stdin) == 0)
 break;

The client sends to the server what was just read from stdin.

CS33 Intro to Computer Systems XXVIII–52 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

UDP Client (6)

/* send data to server */
 if (sendto(fd, buf, strlen(buf), 0, rp->ai_addr,
 rp->ai_addrlen) < 0) {
 perror("sendto");
 return -1;
 }

The client receives the server's response, makes sure it's null-terminated, and prints it
out.

CS33 Intro to Computer Systems XXVIII–53 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

UDP Client (7)

/* receive response from server */
 if ((msg_size = recvfrom(fd, buf, 1024, 0, 0, 0)) < 0) {
 perror("recvfrom");
 exit(1);
 }
 buf[msg_size] = 0;
 printf("Server says: %s\n", buf);
 }
 return 0;
}

CS33 Intro to Computer Systems XXVIII–54 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2

Suppose a process on one machine sends a
datagram to a process on another machine. The
sender uses sendto and the receiver uses
recvfrom. There’s a momentary problem with
the network and the datagram doesn’t make it
to the receiving process. Its call to recvfrom

a) returns –1 (indicating an error)
b) returns 0
c) returns some other value
d) doesn’t return

CS33 Intro to Computer Systems XXVIII–55 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Reliable Communication

• The promise …
– what is sent is received
– order is preserved

• Set-up is required
– two parties agree to communicate
– within the implementation of the protocol:

» each side keeps track of what is sent, what is
received

» received data is acknowledged
» unack’d data is re-sent

• The standard scenario
– server receives connection requests
– client makes connection requests

