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CS 33
Virtual Memory (2)
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OS Role in Virtual Memory

• Memory is like a cache
– quick access if what’s wanted is mapped via page 

table
– slow if not — OS assistance required

• OS
– make sure what’s needed is mapped in
– make sure what’s no longer needed is not mapped 

in
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Mechanism

• Program references memory
– if reference is mapped, access is quick

» even quicker if translation in TLB and referent in on-
chip cache

– if not, page-translation fault occurs and OS is 
invoked
» determines desired page
» maps it in, if legal reference



The (kernel) thread that maintains the free page-frame list is typically called the pageout 
daemon. Its job is to make certain that the free page-frame list has enough page frames 
on it. If the size of the list drops below some threshold, then the pageout daemon 
examines those page frames that are being used and selects a number of them to be 
freed. Before freeing a page, it must make certain that a copy of the current contents of 
the page exists on secondary storage. So, if the page has been modified since it was 
brought into primary storage (easily determined by the hardware-supported modified 
bit), it must first be written out to secondary storage. In many systems, the pageout 
daemon groups such pageouts into batches, so that a number of pages can be written 
out in a single operation, thus saving disk time. Unmodified, selected pages are 
transferred directly to the free page-frame list, modified pages are put there after they 
have been written out.

In most systems, pages in the free list get a “second chance” — if a thread in a process 
references such a page, there is a page fault (the page frame has been freed and could 
be used to hold another page), but the page-fault handler checks to see if the desired 
page is still in primary storage, but in the free list. If it is in the free list, it is removed 
and given back to the faulting process. We still suffer the overhead of a trap, but there is 
no wait for I/O.
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The “Pageout Daemon”

In-Use Page 
Frames

Free Page 
Frames

Pageout
Daemon

Disk



The OS can keep track of the history of page frame by use of two bits in each page-table 
entry: the modify bit, which is set by hardware whenever the associated page frame is 
modified, and the referenced bit, which is set by hardware whenever the associated page 
is accessed (via either a load or a store).
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Managing Page Frames

V M R Prot Page Frame #



A common approach for determining which page frames are not in use is known as the 
clock algorithm. All active page frames are conceptually arranged in a circularly linked 
list. The page-out thread slowly traverses the list. The “one-handed” version of the clock 
algorithm, each time it encounters a page, checks the reference bit in the corresponding 
translation entry: if the bit is set, it clears it. If the bit is clear, it adds the page to the 
free list (writing it back to secondary storage first, if necessary).

A problem with the one-handed version is that, in systems with large amounts of 
primary storage, it might take too long for the page-out thread to work its way all around 
the list of page frames before it can recognize that a page has not been recently 
referenced. In the two-handed version of the clock algorithm, the page-out thread 
implements a second hand some distance behind the first. The front hand simply clears 
reference bits. The second (back) hand removes those pages whose reference bits have 
not been set to one by the time the hand reaches the page frame.
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Clock Algorithm

Front hand:
reference bit = 0

Back hand:
if (reference bit == 0)
    remove page
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Why is virtual memory used?
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More VM than RM

Process

Memory

Disk
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Sharing
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File I/O in Unix, and in most operating systems, is not done directly to the disk drive, 
but through intermediary buffers, known as the buffer cache, in the operating system’s 
address space. This cache has two primary functions. The first, and most important, is 
to make possible concurrent I/O and computation within a Unix process. The second is 
to insulate the user from physical disk-block boundaries. 

From a user process’s point of view, I/O is synchronous. By this we mean that when 
the I/O system call returns, the system no longer needs the user-supplied buffer. For 
example, after a write system call, the data in the user buffer has either been 
transmitted to the device or copied to a kernel buffer — the user can now scribble over 
the buffer without affecting the data transfer. Because of this synchronization, from a 
user process’s point of view, no more than one I/O operation can be in progress at a 
time. 
The buffer cache provides a kernel implementation of multibuffered I/O, and thus 
concurrent I/O and computation are made possible. 

CS33 Intro to Computer Systems XXVIII–11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

File I/O

User Process
Buffer

Buffer Cache



The use of read-aheads and write-behinds makes possible concurrent I/O and 
computation: if the block currently being fetched is block i and the previous block 
fetched was block i-1, then block i+1 is also fetched. Modified blocks are normally 
written out not synchronously but instead sometime after they were modified, 
asynchronously.
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Multi-Buffered I/O
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Traditional I/O
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Mapped File I/O
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Multi-Process Mapped File I/O
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Traditional I/O involves explicit calls to read and write, which in turn means that data 
is accessed via a buffer; in fact, two buffers are usually employed: data is transferred 
between a user buffer and a kernel buffer, and between the kernel buffer and the I/O 
device.

An alternative approach is to map a file into a process’s address space: the file 
provides the data for a portion of the address space and the kernel’s virtual-memory 
system is responsible for the I/O. A major benefit of this approach is that data is 
transferred directly from the device to where the user needs it; there is no need for an 
extra system buffer.
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Mapped Files

• Traditional File I/O
char buf[BigEnough];
fd = open(file, O_RDWR);
for (i=0; i<n_recs; i++) {

read(fd, buf, sizeof(buf));
use(buf);

}

• Mapped File I/O
record_t *MappedFile;

fd = open(file, O_RDWR);
MappedFile = mmap(... , fd, ...);

for (i=0; i<n_recs; i++)

use(MappedFile[i]);



Mmap maps the file given by fd, starting at position off, for len bytes, into the caller’s address 
space starting at location addr

• len is rounded up to a multiple of the page size
• off must be page-aligned
• if addr is zero, the kernel assigns an address
• if addr is positive, it is a suggestion to the kernel as to where the mapped file should be 

located (it usually will be aligned to a page).  However, if flags includes MAP_FIXED, then 
addr is not modified by the kernel (and if its value is not reasonable, the call fails)

• the call returns the address of the beginning of the mapped file

The flags argument must include either MAP_SHARED or MAP_PRIVATE (but not both). If it’s 
MAP_SHARED, then the mapped portion of the caller’s address space contains the current 
contents of the file; when the mapped portion of the address space is modified by the process, the 
corresponding portion of the file is modified.

However, if flags includes MAP_PRIVATE, then the idea is that the mapped portion of the address 
space is initialized with the contents of the file, but that changes made to the mapped portion of 
the address space by the process are private and not written back to the file. The details are a bit 
complicated: as long as the mapping process does not modify any of the mapped portion of the 
address space, the pages contained in it contain the current contents of the corresponding pages 
of the file. However, if the process modifies a page, then that particular page no longer contains the 
current contents of the corresponding file page, but contains whatever modifications are made to it 
by the process. These changes are not written back to the file and not shared with any other 
process that has mapped the file. It’s unspecified what the situation is for other pages in the 
mapped region after one of them is modified. Depending on the implementation, they might 
continue to contain the current contents of the corresponding pages of the file until they, 
themselves, are modified. Or they might also be treated as if they’d just been written to and thus 
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Mmap System Call

void *mmap(
  void *addr,
    // where to map file (0 if don’t care)
  size_t len,
    // how much to map
  int prot,
    // memory protection (read, write, exec.)
  int flags,
    // shared vs. private, plus more
  int fd,
    // which file
  off_t off
    // starting from where
  );



no longer be shared with others.



The mmap system call maps a file into a process’s address space. All processes mapping 
the same file can share the pages of the file.
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The mmap System Call
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Here, Data is a variable located in the highlighted file page.

There are a couple options for how modifications to mmapped files are dealt with. The 
most straightforward is the share option in which changes to mmapped file pages modify 
the file and hence the changes are seen by the other processes who have share-mapped 
the file.

Hence, the change to Data is seen by both processes mapping the file.
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Share-Mapped Files
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The other option is to private-map the file: changes made to mmapped file pages do not 
modify the file. Instead, when a page of a file is first modified via a private mapping, a 
copy of just that page is made for the modifying process, but this copy is not seen by 
other processes, nor does it appear in the file.

In the slide, the process on the left has private-mapped the file. Thus, its changes to 
Data (in the private-mapped portion of the address space) are made to a copy of the page 
containing Data. Thus, the other process will continue to see the original Data.
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Private-Mapped Files
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Here we map the contents of a file containing a dataObject_t into the caller’s address 
space, allowing it both read and write access. Note mapping the file into memory does 
not cause any immediate I/O to take place. The operating system will perform the I/O 
when necessary, according to its own rules.
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Example
int main( ) {
 int fd;
 dataObject_t *dataObjectp;

 fd = open("file", O_RDWR);
 if ((int)(dataObjectp = (dataObject_t *)mmap(0,
      sizeof(dataObject_t),
     PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0)) == -1) {
   perror("mmap");
    exit(1);
 }

  // dataObjectp points to region of (virtual) memory
  // containing the contents of the file

  ...

}



When a process calls fork and creates a child, the child’s address space is normally a 
copy of the parent’s. Thus changes made by the child to its address space will not be 
seen in the parent’s address space (as shown in the left-hand column). However, if there 
is a region in the parent’s address space that has been mmapped using the 
MAP_SHARED flag, and subsequently the parent calls fork and creates a child, the 
mmapped region is not copied but is shared by parent and child. Thus changes to the 
region made by the child will be seen by the parent (and vice versa).
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fork and mmap
int main() {
  int x=1;

  if (fork() == 0) {
    // in child
    x = 2;
    exit(0);
  } 
  // in parent
  while (x==1) {
    // will loop forever
  }
  return 0;
}

int main() {
  int fd = open( ... );
 int *xp = (int *)mmap(...,
      MAP_SHARED, fd, ...);
  xp[0] = 1;
  if (fork() == 0) {
    // in child
    xp[0] = 2;
    exit(0);
  } 
  // in parent
  while (xp[0]==1) {
    // will terminate
  }
  return 0;
}



The source code used in this lecture, as well as some additional related source code, is 
on the course web page.
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CS 33
Network Programming (1)
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Communicating Over the Internet

Internet
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The Internet
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Names and Addresses

• cslab1c.cs.brown.edu
– the name of a computer on the internet
– mapped to an internet address

• nytimes.com
– the name of a website
– mapped to a number of internet addresses

• How are names mapped to addresses?
– domain name service (DNS): a distributed database

• How are the machines corresponding to 
internet addresses found?
– with the aid of various routing protocols
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Internet Addresses

• IP (internet protocol) address
– one per network interface
– 32 bits (IPv4)

» 5527 per acre of RI
» 25 per acre of Texas

– 128 bits (IPv6)
» 1.6 billion per cubic mile of a sphere whose radius is 

the mean distance from the Sun to the (former) planet 
Pluto

• Port number
– one per service instance per machine
– 16 bits

» port numbers less than 1024 are reserved for 
privileged applications
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Notation

• Addresses (assume IPv4: 32-bit addresses)
– written using dot notation

» 128.48.37.1
• dots separate bytes

– address plus port (1426):
» 128.48.37.1:1426
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Reliability

• Two possibilities
– don’t worry about it

» just send it
• if it arrives at its destination, that’s good!

–no verification
– worry about it

» keep track of what’s been successfully 
communicated
• receiver “acks”

» retransmit until
• data is received
or
• it appears that “the network is down”
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Reliability vs. Unreliability

• Reliable communication
– good for

» email
» texting
» distributed file systems
» web pages

– bad for
» streaming audio
» streaming video a little noise is better than a long pause
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The Data Abstraction

• Byte stream
– sequence of bytes

» as in pipes
– any notion of a larger data aggregate is the 

responsibility of the programmer
• Discrete records

– sequence of variable-size “records”
– boundaries between records maintained
– receiver receives discrete records, as sent by 

sender
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What’s Supported

• Stream
– byte-stream data abstraction
– reliable transmission

• Datagram
– discrete-record data abstraction
– unreliable transmission
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Quiz 1

The following code is used to transmit data 
over a reliable byte-stream communication 
channel. Assume sizeof(data) is large.

// sender
record_t data=getData();
write(fd, &data,
  sizeof(data));

// receiver
read(fd, &data,
  sizeof(data));
useData(data);

Does it work?
a) always
b) always, assuming no network problems
c) sometimes
d) never



Sockets are the abstraction of the communication path. An application sets up a socket 
as the basis for communication. It refers to it via a file descriptor.
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Sockets

Comm. 
MechanismSocket Socket

• You tell the system what you want by 
setting up the socket

• The system deals with all the other 
details



We focus strictly on the internet domain.
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Socket Parameters

• Styles of communication:
– stream: reliable, two-way byte streams
– datagram: unreliable, two-way record-oriented
– and others

• Communication domains
– UNIX

» endpoints (sockets) named with file-system pathnames
» supports stream and datagram
» trivial protocols: strictly for intra-machine use

– Internet
» endpoints named with IP addresses
» supports stream and datagram

– others
• Protocols

– the means for communicating data
– e.g., TCP/IP, UDP/IP
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Setting Things Up
• Socket (communication endpoint) is set up
• Datagram communication

– use sendto system call to send data to named 
recipient

– use recvfrom system call to receive data and name 
of sender

• Stream communication
– client connects to server

» server uses listen and accept system calls to receive 
connections

» client uses connect system call to make connections
– data transmitted using send or write system calls
– data received using recv or read system calls
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Socket Addresses

• struct sockaddr
– represents a network address
– many sorts

» we use struct sockaddr_in
– we can ignore the details

» embedded in layers of software

• getaddrinfo()
– function used to obtain struct sockaddrʼs



The general idea of using getaddrinfo is that you supply the name of the host you’d like 
to contact (node), which service on that host (service), and a description of how you’d 
like to communicate (hints). It returns a list of possible means for contacting the server 
in the form of a list of addrinfo structures (res). If the node argument is neither NULL 
nor the name of the local machine, getaddrinfo looks up what it needs in the domain 
name service (DNS) – the internet-wide distributed name service.
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getaddrinfo()

• int getaddrinfo(
 const char *node,
 const char *service,
 const struct addrinfo *hints,
 struct addrinfo **res);

– node is the host you want to look up (NULL for the machine 
you are on)

– service is the service on that host (may be supplied as a 
port number)

– hints are additional information describing what you want
– res is a list of struct sockaddr containing the results of the 

search



Here we begin an example of a simple UDP server that receives messages from clients, 
prints them along with an indication of who sent the message, and politely responds.

In this first slide we check that we're invoked correctly (the command line should 
include the port number we're expecting to receive messages on) and have some initial 
declarations.
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UDP Server (1)

int main(int argc, char *argv[]) {
    if (argc != 2) {
        fprintf(stderr, "Usage: server port\n");
        exit(1);
    }
    int udp_socket;
    struct addrinfo udp_hints;
    struct addrinfo *result;



The next step is to set up an address for our socket so that clients can contact us. In the 
hints structure, which we initialize to zeroes so that components we don't set are zero, 
we specify that we're using IPv4 (AF_INET), that we are using datagrams (which, over 
IPv4, means UDP). Setting the flags to AI_PASSIVE is a bit of magic that allows the 
server to receive messages from multiple sources.

We call getaddrinfo to get an appropriate address to bind to our socket (next slide). Its 
first (name) argument is NULL, which means that we want the address of the machine 
we're on. Note the use of gai_strerror to produce an error message given an error return 
from getaddrinfo. 

CS33 Intro to Computer Systems XXVIII–40 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

UDP Server (2)

memset(&udp_hints, 0, sizeof(udp_hints));
    udp_hints.ai_family = AF_INET;
    udp_hints.ai_socktype = SOCK_DGRAM;
    udp_hints.ai_flags = AI_PASSIVE;

    int err;
    if ((int err = getaddrinfo(NULL, argv[1],
          &udp_hints, &result)) != 0) {
        fprintf(stderr,"%s\n", gai_strerror(err));
        exit(1);
    }



Next, we iterate over the output of getaddrinfo (the list pointed to by its result 
argument). Though the length of this list is normally exactly one, it could be greater than 
one if our computer has multiple network interfaces. (The length could also be zero if it 
has no network interfaces, or none of the right sort.)

We try to create a socket that matches our desired socket type. Assuming we get the 
socket (which is referred to by the file descriptor udp_socket), we then try to bind it to 
the address returned by getaddrinfo. If all this works, we assume we're good to go. 
Otherwise, we try the next address in the list, if there are any more.
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UDP Server (3)

struct addrinfo *r;
    for (r = result; r != NULL; r = r->ai_next) {
        if ((udp_socket =
              socket(r->ai_family, r->ai_socktype,
              r->ai_protocol)) < 0) {
            continue;
        }
        if (bind(udp_socket, r->ai_addr, r->ai_addrlen) >= 0) {
            break;
        }
        close(udp_socket);
    }



If we couldn't find anything that worked, we terminate the program. Otherwise, we free 
up the list of addresses, since we don't need them anymore. Note the use of 
freeaddrinfo for this purpose.
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UDP Server (4)

if (r == NULL) {
        fprintf(stderr, "Could not bind to %s\n", argv[1]);
        exit(1);
    }

    freeaddrinfo(result);



Now that we've set up a socket and bound it to an address that clients can send 
messages to, we enter a loop to deal with all the incoming messages.
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UDP Server (5)

while (1) {
        char buf[1024];
        struct sockaddr from_addr;
        int from_len = sizeof(struct sockaddr);
        int msg_size;



We call recfrom (which is just like read, but with extra arguments) to get the next 
message from a client. The fourth argument could specify some flags, but we don't need 
any here (or in the networking lab). The fourth and fifth arguments, if not zeroes, give an 
address of memory to receive the network name of the caller, as well as its length. The 
length argument serves two purposes: on entry to the function, it indicates how much 
memory we have to receive the network address. On return from the function, it tells us 
how many bytes were actually used.

Note that we put a zero at the end of buf, so we can safely print it (next slide).
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UDP Server (6)

/* receive message from client */
        if ((msg_size = recvfrom(udp_socket, buf, 1024, 0,
              (struct sockaddr *)&from_addr, &from_len)) < 0) {
            perror("recvfrom");
            exit(1);
        }
        buf[msg_size] = 0;



Next we print out who the client was and what its message was. The function 
getnameinfo is sort of the inverse of getaddrinfo: given a struct sockaddr (as produced 
by recvfrom), it tells us the name of the machine and the service requested (or port 
number). We then print the name of the machine, the service name (or port number), 
and the message itself.  Note the use of gai_strerror for interpreting an error return from 
getnameinfo.
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UDP Server (7)

char host_name[256];
        char serv_name[256];
        if ((err = getnameinfo((struct sockaddr *)&from_addr,
              from_len, host_name, sizeof(host_name),
              serv_name, sizeof(serv_name), 0))) {
            fprintf(stderr, "%s/n", gai_strerror(err));
            exit(1);
        }
        printf("message from %s port %s:\n%s\n",
              host_name, serv_name, buf);



Finally, to be polite, we send a response to the client, thanking it for its message. The 
function sendto is like write, but with extra arguments. As with recvfrom, we set the 
flags argument (4th) to zero, but the next two arguments indicate whom we're sending 
the message to (the client, in this case).
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UDP Server (8)

/* respond to client */
        if (sendto(udp_socket, "thank you", 9, 0,
              (const struct sockaddr *)&from_addr,
              from_len) < 0) {
            perror("sendto");
            exit(1);
        }
    }
}



Now we look at the code for a client that communicates with our UDP server. Note that 
the command line of the client specifies both the host the server is on, as well as the 
port number. If the server is on the same host as the client, host may be specified as 
"localhost".
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UDP Client (1)

int main(int argc, char *argv[]) {
 int s;
 int sock;
 struct addrinfo hints;
 struct addrinfo *result;
 struct addrinfo *rp;

 if (argc != 3) {
  fprintf(stderr, "Usage: client host port\n");
  exit(1);
 }



We start by looking up the internet address of the server. To do this, we first fill in the 
hints structure to make it clear that we want a server with an internet (IPv4) interface 
and that we want UDP (datagrams). We call getaddrinfo to get a list of addresses. Again, 
note the use of gai_strerror to give us an error message.

Unlike what we did for the server code, we supply a non-null first argument to 
getaddrinfo, indicating which server we want to communicate with.
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UDP Client (2)

// Step 1: find the internet address of the server
    memset(&hints, 0, sizeof(hints));
    hints.ai_family = AF_INET;
    hints.ai_socktype = SOCK_DGRAM;

    if ((s=getaddrinfo(argv[1], argv[2], &hints,
          &result)) != 0) {
        fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));
        exit(1);
    }



Next, we go through the addresses returned by getaddrinfo and use the first one for 
which we can successfully set up a socket. The list's length is usually one, and that one 
usually works.

We free up list (by calling freeaddrinfo) since we no longer need it.
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UDP Client (3)

// Step 2: set up socket for UDP
    for (rp = result; rp != NULL; rp - rp->ai_next) {
        if ((sock = socket(rp->ai_family, rp->ai_socktype,
              rp->ai_protocol)) >= 0) {
            break;
        }
    }
    if (rp == NULL) {
        fprintf(stderr, "Could not communicate with %s\n",
              argv[1]);
        exit(1);
    }
    freeaddrinfo(result);



Next, we call our communicate function that will exchange messages with the server 
(although we don't know yet whether the server is up and running).
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UDP Client (4)

// Step 3: communicate with server
    communicate(sock, rp);

    return 0;

}



In our communicate function, we first read a line from stdin (which will be sent to the 
server).
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UDP Client (5)

int communicate(int fd, struct addrinfo *rp) {
    while (1) {
        char buf[1024];
        int msg_size;

        if (fgets(buf, 1024, stdin) == 0)
            break;



The client sends to the server what was just read from stdin.
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UDP Client (6)

/* send data to server */
        if (sendto(fd, buf, strlen(buf), 0, rp->ai_addr,
              rp->ai_addrlen) < 0) {
            perror("sendto");
            return -1;
        }



The client receives the server's response, makes sure it's null-terminated, and prints it 
out.
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UDP Client (7)

/* receive response from server */
        if ((msg_size = recvfrom(fd, buf, 1024, 0, 0, 0)) < 0) {
            perror("recvfrom");
            exit(1);
        }
        buf[msg_size] = 0;
        printf("Server says: %s\n", buf);
    }
    return 0;
}
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Quiz 2

Suppose a process on one machine sends a 
datagram to a process on another machine. The 
sender uses sendto and the receiver uses 
recvfrom. There’s a momentary problem with 
the network and the datagram doesn’t make it 
to the receiving process. Its call to recvfrom

a) returns –1 (indicating an error)
b) returns 0
c) returns some other value
d) doesn’t return
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Reliable Communication

• The promise …
– what is sent is received
– order is preserved

• Set-up is required
– two parties agree to communicate
– within the implementation of the protocol:

» each side keeps track of what is sent, what is 
received

» received data is acknowledged
» unack’d data is re-sent

• The standard scenario
– server receives connection requests
– client makes connection requests


