
The source code used in this lecture, as well as some additional related source code, is
on the course web page.

CS33 Intro to Computer Systems XXIX–1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Network Programming (2)

CS33 Intro to Computer Systems XXIX–2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Reliable Communication

• The promise …
– what is sent is received
– order is preserved

• Set-up is required
– two parties agree to communicate
– within the implementation of the protocol:

» each side keeps track of what is sent, what is
received

» received data is acknowledged
» unack’d data is re-sent

• The standard scenario
– server receives connection requests
– client makes connection requests

CS33 Intro to Computer Systems XXIX–3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (1)

• Server steps
1) create socket

sfd = socket(AF_INET, SOCK_STREAM, 0);

sfd

CS33 Intro to Computer Systems XXIX–4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (2)

• Server steps
2) bind name to socket

bind(sfd,
 (struct sockaddr *)&my_addr, sizeof(my_addr));

sfd

128.148.47.67

The listen system call tells the OS that the process would like to receive connections
from clients via the indicated socket. The MaxQueueLength argument is the maximum
number of connections that may be queued up, waiting to be accepted. Its maximum
value is in /proc/sys/net/core/somaxconn (and is currently 128).

CS33 Intro to Computer Systems XXIX–5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (3)

• Server steps
3) put socket in “listening mode”

int listen(int sfd, int MaxQueueLength);

sfd

128.148.47.67:7326

connection
queue IP Address : Port Number

CS33 Intro to Computer Systems XXIX–6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (4)

• Client steps
1) create socket

cfd = socket(AF_INET, SOCK_STREAM, 0);

cfd

This step is optional – if not done, the OS does it automatically, supplying some
available port number.

CS33 Intro to Computer Systems XXIX–7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (5)

• Client steps
2) bind name to socket

bind(cfd,
 (struct sockaddr *)&my_addr, sizeof(my_addr));

128.137.23.6:43

cfd

The client issues the connect system call to initiate a connection with the server. The
first argument is a file descriptor referring to the client’s socket. Ultimately this socket
will be connected to a socket on the server. Behind the scenes the client OS
communicates with the server OS via a protocol-specific exchange of messages.
Eventually a connection is established and a new socket is created on the server to
represent its end of the connection. This socket is queued on the server’s listening
socket, where it stays until the server process accepts the connection (as shown in the
next slide).

CS33 Intro to Computer Systems XXIX–8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (6)

• Client steps
3) connect to server

connect(cfd, (struct sockaddr *)&server_addr,
 sizeof(server_addr));

128.137.23.6:43

cfd sfd

128.148.47.67:7326

The server process issues an accept system which waits if necessary for a connected
socked to appear on the listening socket’s queue, then pulls the first such socket from
the queue. This socket is the server end of a connection from a client. A file descriptor is
returned that refers to that socket, allowing the process to now communicate with the
client.

CS33 Intro to Computer Systems XXIX–9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (7)

• Server steps
4) accept connection

fd = accept((int)sfd, (struct sockaddr *)addr,
 (int *)&addrlen);

128.137.23.6:43

cfd sfd

128.148.47.67:7326

fd

We begin looking at a TCP example similar to our UDP example. Clients will contact our
server, which prints everything its clients send to it.

CS33 Intro to Computer Systems XXIX–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Server (1)

int main(int argc, char *argv[]) {
 if (argc != 2) {
 fprintf(stderr, "Usage: port\n");
 exit(1);
 }

 int lsocket;
 struct addrinfo tcp_hints;
 struct addrinfo *result;

The server starts by using getaddrinfo to obtain information about its interfaces. Via
tcp_hints, we request information about IPv4 (AF_INET) interfaces supporting TCP
(SOCK_STREAM). The value to which ai_flags is set (AI_PASSIVE) indicates that our
socket will be put into listening mode and its address will be set to allow it to receive
connections on any network it's attached to.

CS33 Intro to Computer Systems XXIX–11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Server (2)

memset(&tcp_hints, 0, sizeof(tcp_hints));
 tcp_hints.ai_family = AF_INET;
 tcp_hints.ai_socktype = SOCK_STREAM;
 tcp_hints.ai_flags = AI_PASSIVE;

 int err;
 if ((err = getaddrinfo(NULL, argv[1], &tcp_hints,
 &result)) != 0) {
 fprintf(stderr,"%s\n", gai_strerror(err));
 exit(1);
 }

Here we look at the list of addrinfo structures returned by getaddrinfo and use the first
for which we can create a socket and bind to (as usual with this, it will probably be the
first and only item in the list).

CS33 Intro to Computer Systems XXIX–12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Server (3)

struct addrinfo *r;
 for (r = result; r != NULL; r = r->ai_next) {
 if ((lsocket =
 socket(r->ai_family, r->ai_socktype,
 r->ai_protocol)) < 0) {
 continue;
 }
 if (bind(lsocket, r->ai_addr, r->ai_addrlen) >= 0) {
 break;
 }
 close(lsocket);
 }

We check to make sure we found a suitable local address. Assuming we did, we free list
of addresses, since we don't need them anymore.

Now that we have a socket, we put it in listening mode, indicating a maximum queue
length of 50 (an arbitrarily chosen value).

CS33 Intro to Computer Systems XXIX–13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Server (4)

if (r == NULL) {
 fprintf(stderr, "Could not find local interface %s\n");
 exit(1);
 }
 freeaddrinfo(result);

 if (listen(lsocket, 50) < 0) {
 perror("listen");
 exit(1);
 }

The server now begins a loop, accepting incoming connection requests from clients.
Each time accept returns (assuming no errors), we have a file descriptor (csock) for the
new client connection.

CS33 Intro to Computer Systems XXIX–14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Server (5)

while (1) {
 int csock;
 struct sockaddr client_addr;
 int client_len = sizeof(client_addr);

 csock = accept(lsocket, &client_addr, &client_len);
 if (csock == -1) {
 perror("accept");
 exit(1);
 }

We figure how who the client is, based on the information returned by accept. We use
getnameinfo to decode the host name and the service name (port number). Note the use
of gai_strerror to deal with errors.

CS33 Intro to Computer Systems XXIX–15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Server (6)

char host_name[256];
 char serv_name[256];
 int err;
 if ((err = getnameinfo(&client_addr,
 client_len, host_name, sizeof(host_name),
 serv_name, sizeof(serv_name), 0))) {
 fprintf(stderr, "%s/n", gai_strerror(err));
 exit(1);
 }
 printf("received connection from %s port %s\n",
 host_name, serv_name);

The server, having just received a connection from the client, creates a new process to
handle that client's connection. The new (child) process calls serve, passing it the file
descriptor for the connected socket. The parent has no further use for that file
descriptor, so it closes it.

CS33 Intro to Computer Systems XXIX–16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Server (7)

switch (fork()) {
 case -1:
 perror("fork");
 exit(1);
 case 0:
 serve(csock);
 exit(0);
 default:
 close(csock);
 break;
 }
 }
 return 0;
}

Finally, we have the serve function, which reads incoming data from the client and write
it to file descriptor 1.

CS33 Intro to Computer Systems XXIX–17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Server (8)

void serve(int fd) {
 char buf[1024];
 int count;

 while ((count = read(fd, buf, 1024)) > 0) {
 write(1, buf, count);
 }
 if (count == -1) {
 perror("read");
 exit(1);
 }
 printf("connection terminated\n");
}

And lastly, we have the code for our TCP client.

CS33 Intro to Computer Systems XXIX–18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Client (1)

int main(int argc, char *argv[]) {
 int s;
 int sock;
 struct addrinfo hints;
 struct addrinfo *result;
 struct addrinfo *rp;
 char buf[1024];

 if (argc != 3) {
 fprintf(stderr, "Usage: tcpClient host port\n");
 exit(1);
 }

The client begins by looking up, via getaddrinfo, possible addresses for the server.

CS33 Intro to Computer Systems XXIX–19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Client (2)

memset(&hints, 0, sizeof(hints));
 hints.ai_family = AF_INET;
 hints.ai_socktype = SOCK_STREAM;

 if ((s=getaddrinfo(argv[1], argv[2], &hints, &result))
 != 0) {
 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));
 exit(1);
 }

The client chooses an address for which it can create a socket and connect to. Thus, if
this code completes successfully, the client is now connected to the server via sock.

Note that no port number (or service) is associated with the client's socket. Usually,
what port the client is using is unimportant and one is assigned arbitrarily when the
client calls connect. If it's important that the client's socket have a particularly port
associated with it, bind can be called on the socket before its used for communication.

CS33 Intro to Computer Systems XXIX–20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Client (3)

for (rp = result; rp != NULL; rp = rp->ai_next) {
 if ((sock = socket(rp->ai_family, rp->ai_socktype,
 rp->ai_protocol)) < 0) {
 continue;
 }
 if (connect(sock, rp->ai_addr, rp->ai_addrlen) >= 0) {
 break;
 }
 close(sock);
 }

If no satisfactory address was found, the client terminates. Otherwise, it frees up the no-
longer-needed list of addresses.

CS33 Intro to Computer Systems XXIX–21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Client (4)

if (rp == NULL) {
 fprintf(stderr, "Could not connect to %s\n", argv[1]);
 exit(1);
 }
 freeaddrinfo(result);

Finally, the clients reads from stdin and sends whatever it reads to the server.

CS33 Intro to Computer Systems XXIX–22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Client (5)

while(fgets(buf, 1024, stdin) != 0) {
 if (write(sock, buf, strlen(buf)) < 0) {
 perror("write");
 exit(1);
 }
 }
 return 0;
}

CS33 Intro to Computer Systems XXIX–23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1

The previous slide contains
write(sock, buf, strlen(buf))

If data is lost and must be retransmitted
a) write returns an error so the caller can

retransmit the data.
b) nothing happens as far as the application

code is concerned, the data is retransmitted
automatically.

CS33 Intro to Computer Systems XXIX–24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2

A previous slide contains
write(sock, buf, strlen(buf))

We lose the connection to the other party
(perhaps a network cable is cut).
a) write returns an error so the caller can

reconnect, if desired.
b) nothing happens as far as the application

code is concerned, the connection is
reestablished automatically.

CS33 Intro to Computer Systems XXIX–25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Event-Based Programming

Here we have a server that is dealing with a number of external objects. These objects
are independent of one another and, somewhat randomly, seek the attention of the
server, which must process input from them and send them output.

This is known as event-based programming: we write code that responds to events
coming from a number of sources.

CS33 Intro to Computer Systems XXIX–26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Event Handling

Obj 1 Obj 4

Obj
6

Obj
3Obj 2

Obj 5

Server

As a more concrete example we examine a simple relay: we want to write a program that
takes data received via UDP from a source on the left and forwards it (via UDP) to a sink
on the right. At the same time, it's taking data received from a source on the right and
forwards it (via UDP) to a sink on the left.

CS33 Intro to Computer Systems XXIX–27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Stream Relay

Relay

Source

Sink

Sink

Source

UDP

UDP

UDP

UDP

This solution is probably not what we’d want, since it strictly alternates between
processing the data stream in one direction and then the other.

Note that to simply the slides a bit, even though we're using UDP, we'll use read and
write system calls – the source and destination are assumed in each case.

CS33 Intro to Computer Systems XXIX–28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Solution?

while(…) {
 size = read(left, buf, sizeof(buf));
 write(right, buf, size);
 size = read(right, buf, sizeof(buf));
 write(left, buf, size);
}

The select system call operates on three sets of file descriptors: one of fie descriptors
we’re interested in reading from, one of file descriptors we’re interested in writing to, and
one of file descriptors that might have exceptional conditions pending (we haven’t
covered any examples of such things – they come up as a peculiar feature of TCP known
as out-of-band data, which is beyond the scope of this course). A call to select waits
until at least one of the file descriptors in the given sets has something of interest. In
particular, for a file descriptor in the read set, it’s possible to read data from it; for a file
descriptor in the write set, it’s possible to write data to it. The nfds parameter indicates
the maximum file descriptor number in any of the sets. The timeout parameter may be
used to limit how long select waits. If set to zero, select waits indefinitely.

CS33 Intro to Computer Systems XXIX–29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Select System Call

int select(
 int nfds, // size of fd_sets
 fd_set *readfds, // descriptors of interest
 // for reading
 fd_set *writefds, // descriptors of interest
 // for writing
 fd_set *excpfds, // descriptors of interest
 // for exceptional events
 struct timeval *timeout
 // max time to wait
);

Here a simplified version of a program to handle the relay problem using select. An
fd_set is a data type that represents a set of file descriptors. FD_ZERO, FD_SET, and
FD_ISSET are macros for working with fd_sets; the first makes such a set represent the
null set, the second sets a particular file descriptor to be included in the set, the last
checks to see if a particular file descriptor is included in the set.

This sketch doesn't quite work because it doesn't take into account the fact that we have
limited buffer space: we can't read two messages in a row from one side without writing
the first to the other side before reading the second. Furthermore, even though select
may say it's possible to write to either the left or the right side, we can't do so until we're
read in some data from the other side. Also, the fd_sets that are select's arguments are
modified on return from select to indicate if it's now possible to read or write on the
associated file descriptor. Thus if, on return from select, it's not possible to use that file
descriptor, its associated bit will be zero. We need to explicitly set it to one for the next
call so that select knows we're still interested.

CS33 Intro to Computer Systems XXIX–30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Relay Sketch
void relay(int left, int right) {
 fd_set rd, wr;
 int maxFD = max(left, right) + 1;
 FD_ZERO(&rd); FD_SET(left, &rd); FD_SET(right, &rd);
 FD_ZERO(&wr); FD_SET(left, &wr); FD_SET(right, &wr);
 while (1) {
 select(maxFD, &rd, &wr, 0, 0);
 if (FD_ISSET(left, &rd))
 read(left, bufLR, sizeof(message_t));
 if (FD_ISSET(right, &rd))
 read(right, bufRL, sizeof(message_t));
 if (FD_ISSET(right, &wr))
 write(right, bufLR, sizeof(message_t));
 if (FD_ISSET(left, &rd))
 write(left, bufRL, sizeof(message_t));
 }
}

This and the next three slides give a more complete version of the relay program.

Initially our program is prepared to read from either the left or the right side, but it’s not
prepared to write, since it doesn’t have anything to write. The variables left_read and
right_read are set to one to indicate that we want to read from the left and right sides.
The variables right_write and left_write are set to zero to indicate that we don’t yet
want to write to either side.

The two variables of type message_t are used as buffers to hold a messages received
from the left and to be written to the right, or vice versa.

CS33 Intro to Computer Systems XXIX–31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Relay (1)

void relay(int left, int right) {
 fd_set rd, wr;
 int left_read = 1, right_write = 0;
 int right_read = 1, left_write = 0;
 message_t bufLR;
 message_t bufRL;
 int maxFD = max(left, right) + 1;

We set up the fd_sets rd and wr to indicate what we are interested in reading from and
writing to (initially we have no interest in writing, but are interested in reading from
either side).

CS33 Intro to Computer Systems XXIX–32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Relay (2)

while(1) {
 FD_ZERO(&rd);
 FD_ZERO(&wr);
 if (left_read)
 FD_SET(left, &rd);
 if (right_read)
 FD_SET(right, &rd);
 if (left_write)
 FD_SET(left, &wr);
 if (right_write)
 FD_SET(right, &wr);

 select(maxFD, &rd, &wr, 0, 0);

If there is something to read from the left side, we read it. Having read it, we’re
temporarily not interested in reading anything further from the left side, but now want to
write to the right side.

In a similar fashion, if there is something to read from the right side, we read it.

CS33 Intro to Computer Systems XXIX–33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Relay (3)

if (FD_ISSET(left, &rd)) {
 read(left, bufLR, sizeof(message_t));
 left_read = 0;
 right_write = 1;
 }
 if (FD_ISSET(right, &rd)) {
 read(right, bufRL, sizeof(message_t));
 right_read = 0;
 left_write = 1;
 }

Similarly for writing: if we've written something to one side, we have nothing more to
write to that side, but are now interested in reading from the other side.

CS33 Intro to Computer Systems XXIX–34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Relay (4)

if (FD_ISSET(right, &wr)) {
 write(right, bufLR, sizeof(message_t));
 left_read = 1;
 right_write = 0;
 }
 if (FD_ISSET(left, &wr)) {
 write(left, bufRL, sizeof(message_t));
 right_read = 1;
 left_write = 0;
 }
 }
 return 0;
}

CS33 Intro to Computer Systems XXIX–35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Linking and Libraries

CS33 Intro to Computer Systems XXIX–36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Libraries

• Collections of useful stuff
• Allow you to:

– incorporate items into your program
– substitute new stuff for existing items

• Often ugly …

Files ending with “.a” are known as archives or static libraries.

CS33 Intro to Computer Systems XXIX–37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Creating a Library

$ gcc -c sub1.c sub2.c sub3.c
$ ls
sub1.c sub2.c sub3.c
sub1.o sub2.o sub3.o
$ ar cr libpriv1.a sub1.o sub2.o sub3.o
$ ar t libpriv1.a
sub1.o
sub2.o
sub3.o
$

The function “puts” is from the standard-I/O library, just as printf is, but it’s
far simpler. It prints its single string argument, appending a ‘\n’ (newline) to
the end.

Note that “-lpriv1” (the second character of the string is a lower-case L and the
last character is the numeral one) is, in this example, shorthand for libpriv1.a,
but we’ll soon see that it’s shorthand for more than that.

Normally, libraries are expected to be found in the current directory. The “-L”
flag is used to specify additional directories in which to look for libraries.

CS33 Intro to Computer Systems XXIX–38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Using a Library

$ cat prog.c
int main() {
 sub1();
 sub2();
 sub3();
}

$ cat sub1.c
void sub1() {
 puts("sub1");
}

$ gcc -o prog prog.c -L. -lpriv1
$./prog
sub1
sub2
sub3

Where does puts come from?

$ gcc –o prog prog.c –L. \
 -lpriv1 \
 –L/lib/x86_64-linux-gnu -lc

CS33 Intro to Computer Systems XXIX–39 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Static-Linking: What’s in the
Executable

• ld puts in the executable:
» (assuming all .c files have been compiled into .o files)

– all .o files from argument list (including those newly
compiled)

– .o files from archives as needed to satisfy
unresolved references
» some may have their own unresolved references that

may need to be resolved from additional .o files from
archives

» each archive processed just once (as ordered in
argument list)
• order matters!

CS33 Intro to Computer Systems XXIX–40 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Example

$ cat prog2.c
int main() {
 void func1();
 func1();
 return 0;
}
$ cat func1.c
void func1() {
 void func2();
 func2();
}
$ cat func2.c
void func2() {
}

CS33 Intro to Computer Systems XXIX–41 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Order Matters ...

$ ar t libf1.a

func1.o
$ ar t libf2.a
func2.o
$ gcc –o prog2 prog2.c -L. –lf1 –lf2
$

$ gcc –o prog2 prog2.c -L. –lf2 –lf1
./libf1.a(sub1.o): In function `func1':
func1.c:(.text+0xa): undefined reference to `func2'
collect2: error: ld returned 1 exit status

CS33 Intro to Computer Systems XXIX–42 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Substitution

$ cat myputs.c
int puts(char *s) {
 write(1, "My puts: ", 9);
 write(1, s, strlen(s));
 write(1, "\n", 1);
 return 1;
}
$ gcc –c myputs.c
$ ar cr libmyputs.a myputs.o
$ gcc -o prog prog.c -L. –lpriv1 -lmyputs
$./prog
My puts: sub1
My puts: sub2
My puts: sub3

CS33 Intro to Computer Systems XXIX–43 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

An Urgent Problem

• printf is found to have a bug
– perhaps a security problem

• All existing instances must be replaced
– there are zillions of instances ...

• Do we have to re-link all programs that use
printf?

CS33 Intro to Computer Systems XXIX–44 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Dynamic Linking

• Executable is not fully linked
– contains list of needed libraries

• Linkages set up when executable is run

CS33 Intro to Computer Systems XXIX–45 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Benefits

• Without dynamic linking
– every executable contains copy of printf (and other

stuff)
» waste of disk space
» waste of primary memory

• With dynamic linking
– just one copy of printf

» shared by all

Linux supports two kinds of libraries — static libraries, contained in archives, whose
names end with “.a” (e.g. libc.a) and shared objects, whose names end with “.so” (e.g.
libc.so). When ld is invoked to handle the linking of object code, it is normally given a
list of libraries in which to find unresolved references. If it resolves a reference within a
.a file, it copies the code from the file and statically links it into the object code.
However, if it resolves the reference within a .so file, it records the name of the shared
object (not the complete path, just the final component) and postpones actual linking
until the program is executed.

If the program is fully bound and relocated, then it is ready for direct execution.
However, if it is not fully bound and relocated, then ld arranges things so that when the
program is executed, rather than starting with the program’s main function, a runtime
version of ld, called ld-linux.so, is called first. ld-linux.so maps all the required libraries
into the address space and then calls the main routine.

CS33 Intro to Computer Systems XXIX–46 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shared Objects: Unix’s Dynamic
Linking

1 Compile program
2 Track down references with ld

– archives (containing relocatable objects) in “.a”
files are statically linked

– shared objects in “.so” files are dynamically linked
» names of needed .so files included with executable

3 Run program
– ld-linux.so is invoked first to complete the linking

and relocation steps, if necessary

