
CS33 Intro to Computer Systems XXIX–1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Network Programming (2)

CS33 Intro to Computer Systems XXIX–2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Reliable Communication

• The promise …
– what is sent is received
– order is preserved

• Set-up is required
– two parties agree to communicate
– within the implementation of the protocol:

» each side keeps track of what is sent, what is
received

» received data is acknowledged
» unack’d data is re-sent

• The standard scenario
– server receives connection requests
– client makes connection requests

CS33 Intro to Computer Systems XXIX–3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (1)

• Server steps
1) create socket

sfd = socket(AF_INET, SOCK_STREAM, 0);

sfd

CS33 Intro to Computer Systems XXIX–4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (2)

• Server steps
2) bind name to socket

bind(sfd,

 (struct sockaddr *)&my_addr, sizeof(my_addr));

sfd

128.148.47.67

CS33 Intro to Computer Systems XXIX–5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (3)

• Server steps
3) put socket in “listening mode”

int listen(int sfd, int MaxQueueLength);

sfd

128.148.47.67:7326

connection
queue IP Address : Port Number

CS33 Intro to Computer Systems XXIX–6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (4)

• Client steps
1) create socket

cfd = socket(AF_INET, SOCK_STREAM, 0);

cfd

CS33 Intro to Computer Systems XXIX–7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (5)

• Client steps
2) bind name to socket

bind(cfd,

 (struct sockaddr *)&my_addr, sizeof(my_addr));

128.137.23.6:43

cfd

CS33 Intro to Computer Systems XXIX–8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (6)

• Client steps
3) connect to server

connect(cfd, (struct sockaddr *)&server_addr,
 sizeof(server_addr));

128.137.23.6:43

cfd sfd

128.148.47.67:7326

CS33 Intro to Computer Systems XXIX–9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (7)

• Server steps
4) accept connection

fd = accept((int)sfd, (struct sockaddr *)addr,
 (int *)&addrlen);

128.137.23.6:43

cfd sfd

128.148.47.67:7326

fd

CS33 Intro to Computer Systems XXIX–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Server (1)

int main(int argc, char *argv[]) {
 if (argc != 2) {
 fprintf(stderr, "Usage: port\n");
 exit(1);

 }

 int lsocket;
 struct addrinfo tcp_hints;
 struct addrinfo *result;

CS33 Intro to Computer Systems XXIX–11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Server (2)

memset(&tcp_hints, 0, sizeof(tcp_hints));
 tcp_hints.ai_family = AF_INET;

 tcp_hints.ai_socktype = SOCK_STREAM;
 tcp_hints.ai_flags = AI_PASSIVE;

 int err;
 if ((err = getaddrinfo(NULL, argv[1], &tcp_hints,
 &result)) != 0) {

 fprintf(stderr,"%s\n", gai_strerror(err));

 exit(1);
 }

CS33 Intro to Computer Systems XXIX–12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Server (3)

struct addrinfo *r;
 for (r = result; r != NULL; r = r->ai_next) {
 if ((lsocket =
 socket(r->ai_family, r->ai_socktype,

 r->ai_protocol)) < 0) {

 continue;
 }
 if (bind(lsocket, r->ai_addr, r->ai_addrlen) >= 0) {
 break;
 }
 close(lsocket);

 }

CS33 Intro to Computer Systems XXIX–13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Server (4)

if (r == NULL) {
 fprintf(stderr, "Could not find local interface %s\n");

 exit(1);
 }

 freeaddrinfo(result);

 if (listen(lsocket, 50) < 0) {
 perror("listen");

 exit(1);
 }

CS33 Intro to Computer Systems XXIX–14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Server (5)

while (1) {
 int csock;
 struct sockaddr client_addr;
 int client_len = sizeof(client_addr);

 csock = accept(lsocket, &client_addr, &client_len);

 if (csock == -1) {
 perror("accept");

 exit(1);

 }

CS33 Intro to Computer Systems XXIX–15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Server (6)

char host_name[256];
 char serv_name[256];
 int err;
 if ((err = getnameinfo(&client_addr,
 client_len, host_name, sizeof(host_name),
 serv_name, sizeof(serv_name), 0))) {
 fprintf(stderr, "%s/n", gai_strerror(err));
 exit(1);

 }

 printf("received connection from %s port %s\n",
 host_name, serv_name);

CS33 Intro to Computer Systems XXIX–16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Server (7)

switch (fork()) {
 case -1:
 perror("fork");
 exit(1);

 case 0:
 serve(csock);

 exit(0);
 default:
 close(csock);

 break;
 }

 }

 return 0;
}

CS33 Intro to Computer Systems XXIX–17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Server (8)

void serve(int fd) {
 char buf[1024];
 int count;

 while ((count = read(fd, buf, 1024)) > 0) {
 write(1, buf, count);

 }
 if (count == -1) {
 perror("read");

 exit(1);
 }

 printf("connection terminated\n");

}

CS33 Intro to Computer Systems XXIX–18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Client (1)

int main(int argc, char *argv[]) {
 int s;
 int sock;
 struct addrinfo hints;
 struct addrinfo *result;
 struct addrinfo *rp;
 char buf[1024];

 if (argc != 3) {
 fprintf(stderr, "Usage: tcpClient host port\n");
 exit(1);

 }

CS33 Intro to Computer Systems XXIX–19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Client (2)

memset(&hints, 0, sizeof(hints));
 hints.ai_family = AF_INET;

 hints.ai_socktype = SOCK_STREAM;

 if ((s=getaddrinfo(argv[1], argv[2], &hints, &result))
 != 0) {

 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));
 exit(1);

 }

CS33 Intro to Computer Systems XXIX–20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Client (3)

for (rp = result; rp != NULL; rp = rp->ai_next) {
 if ((sock = socket(rp->ai_family, rp->ai_socktype,

 rp->ai_protocol)) < 0) {
 continue;
 }

 if (connect(sock, rp->ai_addr, rp->ai_addrlen) >= 0) {
 break;
 }

 close(sock);

 }

CS33 Intro to Computer Systems XXIX–21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Client (4)

if (rp == NULL) {
 fprintf(stderr, "Could not connect to %s\n", argv[1]);

 exit(1);
 }

 freeaddrinfo(result);

CS33 Intro to Computer Systems XXIX–22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

TCP Client (5)

while(fgets(buf, 1024, stdin) != 0) {
 if (write(sock, buf, strlen(buf)) < 0) {
 perror("write");
 exit(1);

 }

 }

 return 0;
}

CS33 Intro to Computer Systems XXIX–23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1

The previous slide contains
write(sock, buf, strlen(buf))

If data is lost and must be retransmitted
a) write returns an error so the caller can

retransmit the data.
b) nothing happens as far as the application

code is concerned, the data is retransmitted
automatically.

CS33 Intro to Computer Systems XXIX–24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2

A previous slide contains
write(sock, buf, strlen(buf))

We lose the connection to the other party
(perhaps a network cable is cut).
a) write returns an error so the caller can

reconnect, if desired.
b) nothing happens as far as the application

code is concerned, the connection is
reestablished automatically.

CS33 Intro to Computer Systems XXIX–25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Event-Based Programming

CS33 Intro to Computer Systems XXIX–26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Event Handling

Obj 1 Obj 4

Obj 6

Obj 3
Obj 2

Obj 5

Server

CS33 Intro to Computer Systems XXIX–27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Stream Relay

Relay

Source

Sink

Sink

Source

UDP

UDP

UDP

UDP

CS33 Intro to Computer Systems XXIX–28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Solution?

while(…) {
 size = read(left, buf, sizeof(buf));
 write(right, buf, size);
 size = read(right, buf, sizeof(buf));
 write(left, buf, size);
}

CS33 Intro to Computer Systems XXIX–29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Select System Call

int select(
 int nfds, // size of fd_sets
 fd_set *readfds, // descriptors of interest
 // for reading
 fd_set *writefds, // descriptors of interest
 // for writing
 fd_set *excpfds, // descriptors of interest
 // for exceptional events
 struct timeval *timeout
 // max time to wait
);

CS33 Intro to Computer Systems XXIX–30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Relay Sketch
void relay(int left, int right) {
 fd_set rd, wr;
 int maxFD = max(left, right) + 1;
 FD_ZERO(&rd); FD_SET(left, &rd); FD_SET(right, &rd);
 FD_ZERO(&wr); FD_SET(left, &wr); FD_SET(right, &wr);
 while (1) {
 select(maxFD, &rd, &wr, 0, 0);
 if (FD_ISSET(left, &rd))
 read(left, bufLR, sizeof(message_t));
 if (FD_ISSET(right, &rd))
 read(right, bufRL, sizeof(message_t));
 if (FD_ISSET(right, &wr))
 write(right, bufLR, sizeof(message_t));
 if (FD_ISSET(left, &rd))
 write(left, bufRL, sizeof(message_t));
 }
}

CS33 Intro to Computer Systems XXIX–31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Relay (1)

void relay(int left, int right) {
 fd_set rd, wr;
 int left_read = 1, right_write = 0;
 int right_read = 1, left_write = 0;
 message_t bufLR;
 message_t bufRL;
 int maxFD = max(left, right) + 1;

CS33 Intro to Computer Systems XXIX–32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Relay (2)

while(1) {
 FD_ZERO(&rd);
 FD_ZERO(&wr);
 if (left_read)
 FD_SET(left, &rd);
 if (right_read)
 FD_SET(right, &rd);
 if (left_write)
 FD_SET(left, &wr);
 if (right_write)
 FD_SET(right, &wr);

 select(maxFD, &rd, &wr, 0, 0);

CS33 Intro to Computer Systems XXIX–33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Relay (3)

if (FD_ISSET(left, &rd)) {
 read(left, bufLR, sizeof(message_t));
 left_read = 0;
 right_write = 1;
 }
 if (FD_ISSET(right, &rd)) {
 read(right, bufRL, sizeof(message_t));
 right_read = 0;
 left_write = 1;
 }

CS33 Intro to Computer Systems XXIX–34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Relay (4)

if (FD_ISSET(right, &wr)) {
 write(right, bufLR, sizeof(message_t));
 left_read = 1;
 right_write = 0;
 }
 if (FD_ISSET(left, &wr)) {
 write(left, bufRL, sizeof(message_t));
 right_read = 1;
 left_write = 0;
 }
 }
 return 0;
}

CS33 Intro to Computer Systems XXIX–35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Linking and Libraries

CS33 Intro to Computer Systems XXIX–36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Libraries

• Collections of useful stuff
• Allow you to:

– incorporate items into your program
– substitute new stuff for existing items

• Often ugly …

CS33 Intro to Computer Systems XXIX–37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Creating a Library

$ gcc -c sub1.c sub2.c sub3.c

$ ls

sub1.c sub2.c sub3.c
sub1.o sub2.o sub3.o

$ ar cr libpriv1.a sub1.o sub2.o sub3.o

$ ar t libpriv1.a

sub1.o
sub2.o

sub3.o

$

CS33 Intro to Computer Systems XXIX–38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Using a Library

$ cat prog.c
int main() {
 sub1();
 sub2();

 sub3();

}
$ cat sub1.c

void sub1() {

 puts("sub1");
}

$ gcc -o prog prog.c -L. -lpriv1
$./prog

sub1
sub2

sub3

Where does puts come from?

$ gcc –o prog prog.c –L. \
 -lpriv1 \
 –L/lib/x86_64-linux-gnu -lc

CS33 Intro to Computer Systems XXIX–39 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Static-Linking: What’s in the
Executable

• ld puts in the executable:
» (assuming all .c files have been compiled into .o files)

– all .o files from argument list (including those newly
compiled)

– .o files from archives as needed to satisfy
unresolved references
» some may have their own unresolved references that

may need to be resolved from additional .o files from
archives

» each archive processed just once (as ordered in
argument list)
• order matters!

CS33 Intro to Computer Systems XXIX–40 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Example

$ cat prog2.c

int main() {
 void func1();
 func1();

 return 0;
}

$ cat func1.c
void func1() {
 void func2();
 func2();
}

$ cat func2.c

void func2() {
}

CS33 Intro to Computer Systems XXIX–41 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Order Matters ...

$ ar t libf1.a

func1.o

$ ar t libf2.a

func2.o

$ gcc –o prog2 prog2.c -L. –lf1 –lf2

$

$ gcc –o prog2 prog2.c -L. –lf2 –lf1

./libf1.a(sub1.o): In function `func1':

func1.c:(.text+0xa): undefined reference to `func2'

collect2: error: ld returned 1 exit status

CS33 Intro to Computer Systems XXIX–42 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Substitution

$ cat myputs.c

int puts(char *s) {
 write(1, "My puts: ", 9);
 write(1, s, strlen(s));

 write(1, "\n", 1);
 return 1;
}
$ gcc –c myputs.c

$ ar cr libmyputs.a myputs.o

$ gcc -o prog prog.c -L. –lpriv1 -lmyputs
$./prog

My puts: sub1

My puts: sub2

My puts: sub3

CS33 Intro to Computer Systems XXIX–43 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

An Urgent Problem

• printf is found to have a bug
– perhaps a security problem

• All existing instances must be replaced
– there are zillions of instances ...

• Do we have to re-link all programs that use
printf?

CS33 Intro to Computer Systems XXIX–44 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Dynamic Linking

• Executable is not fully linked
– contains list of needed libraries

• Linkages set up when executable is run

CS33 Intro to Computer Systems XXIX–45 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Benefits

• Without dynamic linking
– every executable contains copy of printf (and other

stuff)
» waste of disk space
» waste of primary memory

• With dynamic linking
– just one copy of printf

» shared by all

CS33 Intro to Computer Systems XXIX–46 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shared Objects: Unix’s Dynamic
Linking

1 Compile program
2 Track down references with ld

– archives (containing relocatable objects) in “.a”
files are statically linked

– shared objects in “.so” files are dynamically linked
» names of needed .so files included with executable

3 Run program
– ld-linux.so is invoked first to complete the linking

and relocation steps, if necessary

