
CS33 Intro to Computer Systems XXX–1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Linking and Libraries (2)

CS33 Intro to Computer Systems XXX–2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

An Urgent Problem

• printf is found to have a bug
– perhaps a security problem

• All existing instances must be replaced
– there are zillions of instances ...

• Do we have to re-link all programs that use
printf?

CS33 Intro to Computer Systems XXX–3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Dynamic Linking

• Executable is not fully linked
– contains list of needed libraries

• Linkages set up when executable is run

CS33 Intro to Computer Systems XXX–4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Benefits

• Without dynamic linking
– every executable contains copy of printf (and other

stuff)
» waste of disk space
» waste of primary memory

• With dynamic linking
– just one copy of printf

» shared by all

CS33 Intro to Computer Systems XXX–5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Shared Objects: Unix’s Dynamic
Linking

1 Compile program
2 Track down references with ld

– archives (containing relocatable objects) in “.a”
files are statically linked

– shared objects in “.so” files are dynamically linked
» names of needed .so files included with executable

3 Run program
– ld-linux.so is invoked first to complete the linking

and relocation steps, if necessary

CS33 Intro to Computer Systems XXX–6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Creating a Shared Library

$ gcc -fPIC -c myputs.c

$ ld -shared -o libmyputs.so myputs.o

$ gcc -o prog prog.c –fPIC -L. –lpriv1 –lmyputs -Wl,-rpath \
 /home/twd/libs

$ ldd prog

linux-vdso.so.1 => (0x00007fff235ff000)

libmyputs.so => /home/twd/libs/libmyputs.so (0x00007f821370f000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f821314e000)

/lib64/ld-linux-x86-64.so.2 (0x00007f8213912000)

$./prog
My puts: sub1

My puts: sub2

My puts: sub3

CS33 Intro to Computer Systems XXX–7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Order Still Matters

• All shared objects listed in the executable are
loaded into the address space
– whether needed or not

• ld-linux.so will find anything that’s there
– looks in the order in which shared objects are listed

CS33 Intro to Computer Systems XXX–8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

A Problem

• You've put together a library of useful
functions
– libgoodstuff.so

• Lots of people are using it
• It occurs to you that you can make it even

better by adding an extra argument to a few of
the functions
– doing so will break all programs that currently use

these functions
• You need a means so that old code will

continue to use the old version, but new code
will use the new version

CS33 Intro to Computer Systems XXX–9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

A Solution

• The two versions of your program coexist
– libgoodstuff.so.1
– libgoodstuff.so.2

• You arrange so that old code uses the old
version, new code uses the new

• Most users of your code donʼt really want to
have to care about version numbers
– they want always to link with libgoodstuff.so
– and get the version that was current when they

wrote their programs

CS33 Intro to Computer Systems XXX–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Versioning

$ gcc –fPIC -c goodstuff.c

$ ld -shared -soname libgoodstuff.so.1 \

-o libgoodstuff.so.1 goodstuff.o
$ ln -s libgoodstuff.so.1 libgoodstuff.so

$ gcc -o prog1 prog1.c -L. -lgoodstuff \

–Wl,-rpath .

$ vi goodstuff.c
$ gcc –fPIC -c goodstuff.c

$ ld -shared -soname libgoodstuff.so.2 \

-o libgoodstuff.so.2 goodstuff.o
$ rm -f libgoodstuff.so

$ ln -s libgoodstuff.so.2 libgoodstuff.so

$ gcc -o prog2 prog2.c -L. -lgoodstuff \

-Wl,-rpath .

CS33 Intro to Computer Systems XXX–11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Interpositioning

prog

puts

wrapper

CS33 Intro to Computer Systems XXX–12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

How To …

int __wrap_puts(const char *s) {
 int __real_puts(const char *);

 write(2, "calling myputs: ", 16);

 return __real_puts(s);
}

CS33 Intro to Computer Systems XXX–13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Compiling/Linking It

$ cat tputs.c

int main() {
 puts("This is a boring message.");
 return 0;
}

$ gcc -o tputs -Wl,--wrap=puts tputs.c myputs.c

$./tputs
calling myputs: This is a boring message.

$

CS33 Intro to Computer Systems XXX–14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

How To (Alternative Approach) …

#include <dlfcn.h>

int puts(const char *s) {
 int (*pptr)(const char *);

 pptr = (int(*)())dlsym(RTLD_NEXT, "puts");

 write(2, "calling myputs: ", 16);

 return (*pptr)(s);
}

CS33 Intro to Computer Systems XXX–15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

What’s Going On …

• gcc/ld
– compiles code
– does static linking

» searches list of libraries
» adds references to shared objects

• runtime
– program invokes ld-linux.so to finish linking

» maps in shared objects
» does relocation and procedure linking as required

– dlsym invokes ld-linux.so to do more linking
» RTLD_NEXT says to use the next (second)

occurrence of the symbol

CS33 Intro to Computer Systems XXX–16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Delayed Wrapping

• LD_PRELOAD
– environment variable checked by ld-linux.so
– specifies additional shared objects to search (first)

when program is started

CS33 Intro to Computer Systems XXX–17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Environment Variables

• Another form of exec
–int execve(const char *filename,
 char *const argv[],
 char *const envp[]);

• envp is an array of strings, of the form
– key=value

• programs can search for values, given a key
• example

– PATH=~/bin:/bin:/usr/bin:/course/cs0330/bin

CS33 Intro to Computer Systems XXX–18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Example

$ gcc -o tputs tputs.c

$./tputs

This is a boring message.
$ LD_PRELOAD=./libmyputs.so.1; export LD_PRELOAD

$./tputs

calling myputs: This is a boring message.

$

CS33 Intro to Computer Systems XXX–19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Mmapping Libraries

text

data
bss

dynamic

stack

available for
mmap

C library
my lib

CS33 Intro to Computer Systems XXX–20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Problem

• How is relocation handled?

CS33 Intro to Computer Systems XXX–21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Pre-Relocation

C library

math library

1,000,000

3,000,000

printf: 1,000,400

call printf
1000400

stdfiles: 1,200,600

&stdfiles

call printf

CS33 Intro to Computer Systems XXX–22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

But …

Mary’s library

5,000,000

my library

5,500,000

CS33 Intro to Computer Systems XXX–23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

But …

Mary’s library

5,000,000

my library

5,500,000

8,000,000

CS33 Intro to Computer Systems XXX–24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1

We need to relocate all references to Mary’s
library in my library. What option should we
give to mmap when we map my library into our
address space?

a) the MAP_PRIVATE option
b) the MAP_SHARED option
c) mmap can’t be used in this situation

CS33 Intro to Computer Systems XXX–25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Relocation Revisited

• Modify shared code to effect relocation
– result is no longer shared!

• Separate shared code from (unshared)
addresses
– position-independent code (PIC)
– code can be placed anywhere
– addresses in separate private section

» pointed to by a register

CS33 Intro to Computer Systems XXX–26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Mapping Shared Objects

Process A

printf()

Process B

printf()
stdio

printf()

CS33 Intro to Computer Systems XXX–27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Mapping printf into the Address Space
• Printf’s text

– read-only
– can it be shared?

» yes: use MAP_SHARED

• Printf’s data
– read-write
– not shared with other processes
– initial values come from file
– can mmap be used?

» MAP_SHARED wouldn’t work
• changes made to data by one process would be

seen by others
» MAP_PRIVATE does work!

• mapped region is initialized from file
• changes are private

CS33 Intro to Computer Systems XXX–28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Mapping printf

page 6
page 7

page 31
page 32

page 3
page 4

page 41
page 42

Process 1

Process 2

printf
text

printf
data

printf
text

printf
data

Real Memory

P1’s printf
page 2
P1’s printf
page 3

P2’s printf
page 2

printf
page 0

Disk

page 0

page 1

page 2

page 3

printf

text

data

printf
page 1

CS33 Intro to Computer Systems XXX–29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Position-Independent Code

• Produced by gcc when given the –fPIC flag
• Processor-dependent; x86-64:

– each dynamic executable and shared object has:
» procedure-linkage table

• shared, read-only executable code
• essentially stubs for calling functions

» global-offset table
• private, read-write data
• relocated dynamically for each process

» relocation table
• shared, read-only data
• contains relocation info and symbol table

CS33 Intro to Computer Systems XXX–30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Global-Offset Table:
Data References

errno address

myglob address

Global Offset Table

errno

myglob

CS33 Intro to Computer Systems XXX–31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Functions in Shared Objects

• Lots of them
• Many are never used
• Fix up linkages on demand

CS33 Intro to Computer Systems XXX–32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

An Example
int main() {
 puts("Hello world\n");
 …
 return 0;
}

00000000000006b0 <main>:
 6b0: 55 push %rbp
 6b1: 48 89 e5 mov %rsp,%rbp
 6b4: 48 8d 3d 99 00 00 00 lea 0x99(%rip),%rdi
 6bb: e8 a0 fe ff ff callq 560 <puts@plt>
 …

CS33 Intro to Computer Systems XXX–33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Before Calling puts
.PLT0:
 pushq GOT+8(%rip)
 jmp *GOT+16(%rip)
 nop; nop
 nop; nop
.puts:
 jmp *puts@GOT(%rip)
.putsnext:
 pushq $putsRelOffset
 jmp .PLT0
.PLT2:
 jmp *name2@GOT(%rip)
.PLT2next:
 pushq $name2RelOffset
 jmp .PLT0

GOT:
 .quad _DYNAMIC
 .quad identification
 .quad ld-linux.so

puts:
 .quad .putsnext
name2:
 .quad .PLT2next

GOT_offset(puts), symx(puts)

Relocation Table

Relocation info:

GOT_offset(name2), symx(name2)Procedure-Linkage Table

CS33 Intro to Computer Systems XXX–34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

After Calling puts
.PLT0:
 pushq GOT+8(%rip)
 jmp *GOT+16(%rip)
 nop; nop
 nop; nop
.puts:
 jmp *puts@GOT(%rip)
.putsnext:
 pushq $putsRelOffset
 jmp .PLT0
.PLT2:
 jmp *name2@GOT(%rip)
.PLT2next:
 pushq $name2RelOffset
 jmp .PLT0

GOT:
 .quad _DYNAMIC
 .quad identification
 .quad ld-linux.so

puts:

 .quad puts
name2:
 .quad .PLT2next

GOT_offset(puts), symx(puts)

Relocation Table

Relocation info:

GOT_offset(name2), symx(name2)Procedure-Linkage Table

CS33 Intro to Computer Systems XXX–35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2

On the second and subsequent calls to puts

a) control goes directly to puts
b) control goes to an instruction that jumps

to puts
c) control still goes to ld-linux.so, but it now

transfers control directly to puts

CS33 Intro to Computer Systems XXX–36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Multithreaded Programming (1)

CS33 Intro to Computer Systems XXX–37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Multithreaded Programming

• A thread is a virtual processor
– an independent agent executing instructions

• Multiple threads
– multiple independent agents executing instructions

CS33 Intro to Computer Systems XXX–38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Why Threads?

• Many things are easier to do with threads
• Many things run faster with threads

CS33 Intro to Computer Systems XXX–39 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

A Simple Example

Relay

Source

Sink

Sink

Source

pipe

pipe

pipe

pipe

CS33 Intro to Computer Systems XXX–40 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Life Without Threads
void relay(int left, int right) {
 fd_set rd, wr;
 int left_read = 1, right_write = 0;
 int right_read = 1, left_write = 0;
 int sizeLR, sizeRL, wret;
 char bufLR[BSIZE], bufRL[BSIZE];
 char *bufpR, *bufpL;
 int maxFD = max(left, right) + 1;

 fcntl(left, F_SETFL, O_NONBLOCK);
 fcntl(right, F_SETFL, O_NONBLOCK);

 while(1) {
 FD_ZERO(&rd);
 FD_ZERO(&wr);
 if (left_read)
 FD_SET(left, &rd);
 if (right_read)
 FD_SET(right, &rd);
 if (left_write)
 FD_SET(left, &wr);
 if (right_write)
 FD_SET(right, &wr);

 select(maxFD, &rd, &wr, 0, 0);

if (FD_ISSET(left, &rd)) {
 sizeLR = read(left, bufLR, BSIZE);
 left_read = 0;
 right_write = 1;
 bufpR = bufLR;
 }
 if (FD_ISSET(right, &rd)) {
 sizeRL = read(right, bufRL, BSIZE);
 right_read = 0;
 left_write = 1;
 bufpL = bufRL;
 }
 if (FD_ISSET(right, &wr)) {
 if ((wret = write(right, bufpR, sizeLR)) == sizeLR) {
 left_read = 1; right_write = 0;
 } else {
 sizeLR -= wret; bufpR += wret;
 }
 }
 if (FD_ISSET(left, &wr)) {
 if ((wret = write(left, bufpL, sizeRL)) == sizeRL) {
 right_read = 1; left_write = 0;
 } else {
 sizeRL -= wret; bufpL += wret;
 }
 }
 }
 return 0;
}

CS33 Intro to Computer Systems XXX–41 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Life With Threads

void copy(int source, int destination) {
 struct args *targs = args;

 char buf[BSIZE];

 while(1) {
 int len = read(source, buf, BSIZE);
 write(destination, buf, len);

 }

}

CS33 Intro to Computer Systems XXX–42 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Processes vs. Threads

Process 1 Process 2 Process 3

CS33 Intro to Computer Systems XXX–43 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Single-Threaded
Database Server

Database

Requests

CS33 Intro to Computer Systems XXX–44 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Multithreaded Database Server

Database

Requests

CS33 Intro to Computer Systems XXX–45 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Single-Core Chips

CS33 Intro to Computer Systems XXX–46 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Dual-Core Chips

CS33 Intro to Computer Systems XXX–47 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Multi-Core Chips

CS33 Intro to Computer Systems XXX–48 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Good News/Bad News

J Good news
– multi-threaded programs can take advantage of

multi-core chips (single-threaded programs cannot)
L Bad news

– it’s not easy
» must have parallel algorithm

• employing at least as many threads as
processors

• threads must keep processors busy
– doing useful work

CS33 Intro to Computer Systems XXX–49 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Matrix Multiplication Revisited

× =

m

n

n

p

m

p

A B C

CS33 Intro to Computer Systems XXX–50 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Standards

• POSIX 1003.4a ® 1003.1c ® 1003.1j

• Microsoft
– Win32/64

