CS 33

Multithreaded Programming (1)

CS33 Intro to Computer Systems XXX]1-1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Multithreaded Programming

* A thread is a virtual processor
— an independent agent executing instructions

* Multiple threads

— multiple independent agents executing instructions
in a shared address space

CS33 Intro to Computer Systems XXX]-2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Why Threads?

S N
.

 Many things are easier to do with threads
* Many things run faster with threads

CS33 Intro to Computer Systems XXX]-3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

A Simple Example

Source \@7\‘

Relay

CS33 Intro to Computer Systems XXX1-4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Life Without Threads

void relay(int left, int right) ({ if (FD_ISSET (left, &rd)) {
fd set rd, wr; sizelR = read(left, buflLR, BSIZE);
int left read = 1, right write = 0; left read = 0;
int right read = 1, left write = 0; right write = 1;
int sizelLR, sizeRL, wret; bufpR = buflR;
char bufLR[BSIZE], bufRL[BSIZE]; }
char *bufpR, *bufplL; if (FD ISSET (right, &rd))
int maxFD = max (left, right) + 1; sizeRL = read(right, bufRL, BSIZE) ;
right read = 0;
fentl (left, F SETFL, O NONBLOCK) ; left_write =1,
fentl (right, F SETFL, O_NONBLOCK); bufplL = bufRL;
}
while (1) { if (FD_ISSET (right, &wr)) {
FD ZERO (&rd) ; if ((wret = write(right, bufpR, sizelR)) == sizelR) {
FD ZERO (&Wr) ; left read = 1; right write = 0;
if (left read)) else
FD SET(Ieft, srd) ; sizelR —-= wret; bufpR += wret;
if (right read) } }
FD_SET (right, &rd); if (FD ISSET (left, &wr)) {
if (left write) if ((wret = write (left, bufpl, sizeRL)) == sizeRL) {
FD SET (left, &wr); right read = 1; left write = 0;
if (right write) } else { B
FD SET(rzght, &wr) ; sizeRL —-= wret; bufplL += wret;
- }
select (maxFD, &rd, &wr, 0, 0); }

}

return O;

CS33 Intro to Computer Systems XXX1-5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Life With Threads

void copy (int source, int destination) {
struct args *targs = args;
char buf [BSIZE];

while (1) {
int len = read(source, buf, BSIZE);

write (destination, buf, len);

CS33 Intro to Computer Systems XXX1-6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Processes vs. Threads

I B Y Y
JEa I .

Process 1 Process 2 Process 3

CS33 Intro to Computer Systems XXXI-7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Single-Threaded
Database Server

> -

Requests

Database

CS33 Intro to Computer Systems XXX]-8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Multithreaded Database Server

Requests

VAVAVAV/

Database

CS33 Intro to Computer Systems XXX]1-9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Single-Core Chips

1)

1k

CS33 Intro to Computer Systems XXXI-10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Dual-Core Chips

(\
"

CS33 Intro to Computer Systems XXXI-11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

1)

Multi-Core Chips

CS33 Intro to Computer Systems XXX]-12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Good News/Bad News

© Good news

— multi-threaded programs can take advantage of
multi-core chips (single-threaded programs cannot)

@ Bad news

— it’s not easy
» must have parallel algorithm

 employing at least as many threads as
processors

» threads must keep processors busy
—doing useful work

CS33 Intro to Computer Systems XXX]-13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Matrix Multiplication Revisited

=

|
(VARVIRVIAVARV,

Y

3

A - B = C

CS33 Intro to Computer Systems XXX]-14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Standards

« POSIX 1003.4a —» 1003.1c — 1003.1j

 Microsoft
— Win32/64

CS33 Intro to Computer Systems XXX]-15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Creating Threads

long A[M] [N], B[N][P], C[M][P];

for (i=0; 1<M; i++) // create worker threads
pthread create(&thrf{i], 0, matmult, 1);

void *matmult (void *arg) {
long 1 = (long)arg;
// compute row i of the product C of A and B

CS33 Intro to Computer Systems XXX]-16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

When Is It Finished?

long A[M] [N], B[N][P], C[M][P];

for (i=0; 1<M; 1i++) // create worker threads
pthread create(&thrfi], 0, matmult, 1));

for (i=0; 1<M; i++) // walt for termination
pthread join(thrli], 0);

printResult (C); // shouldn’t do this until
// workers have terminated

CS33 Intro to Computer Systems XXXI-17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Example (1)

#include <stdio.h> main() A
#include <pthread.h> long 1i;
#include <string.h> pthread t thr[M];

int error;

#define M 3
#define N 4 // 1nitialize the matrices

#define P 5
long A[M] [N];
long BI[N] [P];
long C[M] [P];

void *matmult (void *);

CS33 Intro to Computer Systems XXX]-18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Example (2)

for (1i=0; 1i<M; 1i++) { // create worker threads
if (error = pthread create(
&thr[il],
0,
matmult,
(void *)1)) {

fprintf (stderr, "pthread create: %s", strerror(error));
exit (1) ;

}

for (i=0; i<M; i++) // wait for workers to finish their jobs
pthread join(thr[i], O0)

/* print the results ... */

CS33 Intro to Computer Systems XXXI-19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Example (3)

void *matmult (void *arg) {
long row = (long)arg;
long col;
long i;
long t;

for (col=0; col < P; col++) {
t = 0;
for (i=0; 1i<N; 1++)
t += Alrow] [1] * B[1i] [col];
Clrow] [col] = t;
}

return (0) ;

CS33 Intro to Computer Systems XXX]-20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Compiling It

O

% gcc —o mat mat.c —-pthread

CS33 Intro to Computer Systems XXX]1-21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Performance

6.0 =

= @ ijk approach

5.0 =

45 — ¢ kij approach

4.0 =
3.5 =
3.0 =
25 =
20 =
1.5 =
1.0 =

05 - B

CS33 Intro to Computer Systems XXX]-22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Termination

pthread exit((wvoid *) value);

return ((void *) wvalue);

pthread join(thread, (void **) &value);

CS33 Intro to Computer Systems XXX]-23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Detached Threads

start servers()
pthread t thread;
int 1;

for (1i=0; 1<nr of server threads; 1++) {
pthread create(&thread, 0, server, 0);
pthread detach (thread);

void *server (void * arg) {

CS33 Intro to Computer Systems XXX]-24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Complications

void relay(int left, int right) {
pthread t LRthread, RLthread;

pthread create (&LRthread,
0,

COPY,
left, right); // Can’t do this

pthread create (&RLthread,
0,

COPY,
right, left); // Can’t do this

CS33 Intro to Computer Systems XXX]-25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Multiple Arguments

typedef struct args {
int src;
int dest;

} args t;

void relay(int left, int right) {
args_t LRargs, RLargs;
pthread t LRthread, RLthread;

pthread create (&LRthread, 0, copy, &LRargs);
pthread create (&RLthread, 0, copy, &RLargs);

CS33 Intro to Computer Systems XXX]-26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Multiple Arguments

Quiz 1
typedef struct args { Does this work?
int src; a) yes
int dest; b) no
} args t; c) it depends upon the word
size

void relay(int left, int right) {
args_t LRargs, RLargs;
pthread t LRthread, RLthread;

pthread create (&LRthread, 0, copy, &LRargs);
pthread create (&RLthread, 0, copy, &RLargs);

CS33 Intro to Computer Systems XXX]-27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Execution

DD LD D e

N \

OS

N\ N\ Cores

CS33 Intro to Computer Systems XXX]-28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Multiplexing Processors

Blocked
Ready

Running >
>
=

%P

)\

Running

Ready

]

CS33 Intro to Computer Systems XXX]-29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2

pthread create(&tid, 0, tproc, (void *)1);
pthread create(&tid, 0, tproc, (void *)2);

printf ("TO\n") ;

void *tproc (void *arg) {
printf ("T$d1\n", (long)argqg):;
return 0O;

In which order are things printed?
a) T2, T1,T0
b) TO, T1, T2
c) T1, T2, TO
d) indeterminate

CS33 Intro to Computer Systems XXXI-30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Cost of Threads

void *work (long n) {

volatile long x=2;

for (long i=0; i<n; i++) {
long oldx = x;
X *= x;
X /= oldx;

}

return 0O;

CS33 Intro to Computer Systems XXXI1-31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Cost of Threads

int main (int argc, char *argv([]) {
long nthreads = atol (argv[1l]);
long iterations = atol (argv[2Z2]);

long val = iterations/nthreads;

for (long 1=0; i1<nthreads; 1++)
pthread create(&thread, 0, work,
(void *)val) ;
pthread exit (0);

return 0O;

CS33 Intro to Computer Systems XXX]-32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Cost of Threads

void *work (long n) {

volatile long x=2;

Not a Quiz

This code runs in time n
on a 6-core processor
when nthreads is 6. It
runs in time p on the

for (long 1=0; i<n; 1i++) same processor when
long oldx = x; nthreads is 1000.
X *= X3
a) n<<p(slower)
x /= oldx; b ~
) n=p(same
J speed)
return 0; c) n>> p (faster)
}
CS33 Intro to Computer Systems XXX]-33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Problem

pthread create(&thread, 0, start, 0);

void *start (void *arg) {
long BigArray[128*1024*1024];

return 0O;

CS33 Intro to Computer Systems XXX]-34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Thread Attributes

pthread t thread;
pthread attr t thr attr;

pthread attr i1nit(&thr attr);

/* establish some attributes */

pthread create(&thread, &thr attr, startroutine, arqg);

CS33 Intro to Computer Systems XXX]-35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Stack Size

pthread t thread;
pthread attr t thr attr;

pthread attr 1nit(&thr attr);
pthread attr setstacksize(&thr attr, 130*1024*1024);

pthread create(&thread, &thr attr, startroutine, arg);

CS33 Intro to Computer Systems XXX]-36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Mutual Exclusion

CS33 Intro to Computer Systems XXX|-37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Threads and Mutual Exclusion

Thread 1:

X = xX+1;
/ %
movl X, %eax
incr %eax

movl %eax, X

*/

Thread 2:

X = x+1;
/%
movl X, %eax
incr %eax

movl %eax, X

*/

CS33 Intro to Computer Systems

XXXI1-38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 3

Suppose the following code is compiled by gcc.
Will it still be the case that x’s value might not be

incremented by 27

a) yes
b) no

Thread 1:

x = x+1;
/%
1ncr X

*/

Thread 2:

x = x+1;
/%
lncr X

*/

CS33 Intro to Computer Systems

XXXI1-39 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

POSIX Threads Mutual Exclusion

pthread mutex t m =
PTHREAD MUTEX INITIALIZER;
// shared by both threads
int x; // ditto
pthread mutex lock (&m);

x = x+1;

pthread mutex unlock (&m) ;

CS33 Intro to Computer Systems XXXI-40 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Correct Usage

pthread mutex lock (&m) ;
// in thread 1

pthread mutex loc

// critical section
// critical

pthread mutex unlock (&m) ;

return;

in thread 2

CS33 Intro to Computer Systems XXXI-41 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

A Queue head

void enqueue (node_ t *item) { node t *dequeue () {
pthread mutex lock (&mutex) ; node t *ret;
item->next = NULL; v pthread mutex lock (&mutex);
if (tail == NULL) { if (head == NULL) {
head = item; ret = NULL;
tail = item; v } else {
} else { ret = head;
tail->next = item; head = head->next;
} v if (head == NULL)
pthread mutex unlock (&mutex) ; talil = NULL;

} }

v pthread mutex unlock (&mutex) ;

ta" return ret;

CS33 Intro to Computer Systems XXX]-42 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

