CS 33

Multithreaded Programming I

CS33 Intro to Computer Systems XXXII-1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Threads and Mutual Exclusion

Thread 1:

X = xX+1;
/ %
movl X, %eax
incr %eax

movl %eax, X

*/

Thread 2:

X = x+1;
/%
movl X, %eax
incr %eax

movl %eax, X

*/

CS33 Intro to Computer Systems

XXXN-2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1

Suppose gcc produces the following code. Will it
still be the case that x’s value might not be

incremented by 27

a) yes
b) no

Thread 1:

x = x+1;
/%
1ncr X

*/

Thread 2:

x = x+1;
/%
lncr X

*/

CS33 Intro to Computer Systems

XXXI-3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

POSIX Threads Mutual Exclusion

pthread mutex t m =
PTHREAD MUTEX INITIALIZER;
// shared by both threads
int x; // ditto
pthread mutex lock (&m);

x = x+1;

pthread mutex unlock (&m) ;

CS33 Intro to Computer Systems XXXII-4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Correct Usage

pthread mutex lock (&m) ;
// critical section

pthread mutex unlock (&m) ;

// 1n thread 1

pthread mutex loc

// critical

return;

in thread 2

pth¥ead mutex unlo

CS33 Intro to Computer Systems

XXXI11-5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

A Queue head

void enqueue (node_ t *item) { node t *dequeue () {
pthread mutex lock (&mutex) ; node t *ret;
item->next = NULL; v pthread mutex lock (&mutex);
if (tail == NULL) { if (head == NULL) {
head = item; ret = NULL;
tail = item; v } else {
} else { ret = head;
tail->next = item; head = head->next;
} v if (head == NULL)
pthread mutex unlock (&mutex) ; talil = NULL;

} }

v pthread mutex unlock (&mutex) ;

ta" return ret;

CS33 Intro to Computer Systems XXXII-6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Removing a Freelist Block

void pull from freelist (fblock t *fbp) {

fbp->blink->flink = fbp->flink;
fbp->flink->blink = fbp->blink;

CS33 Intro to Computer Systems XXXII-7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Parallelizing It

» Coarse grained

—one mutex for the
heap

—threads lock the
mutex before
doing any
operation

—unlock it
afterwards

—only one thread at
a time

* Fine grained

—one mutex for
each block

—threads lock
mutexes of only
the blocks they
are using

—multiple threads
at a time

CS33 Intro to Computer Systems

XXXI1-8

Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Removing a Freelist Block: Coarse
Grained

void pull from freelist (fblock t *fbp) {
pthread mutex lock (&flist mutex);

fbp->blink->flink = fbp->flink;
fbp->flink->blink = fbp->blink;

pthread mutex unlock(&flist mutex);

CS33 Intro to Computer Systems XXXI11-9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Removing a Freelist Block: Fine
Grained (1)

void pull from freelist (fblock t *fbp) {
pthread mutex lock (&fpp->mutex) ;

fbp->blink->flink = fbp->flink;
fbp->flink->blink = fbp->blink;

pthread mutex unlock (&fpp->mutex) ;

CS33 Intro to Computer Systems XXXII-10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Removing a Freelist Block: Fine
Grained (2)

void pull from freelist (fblock t *fbp) {
pthread mutex lock (&fpp->mutex) ;

pthread mutex lock (&fpp->blink->mutex) ;
fbp->blink->flink = fbp->flink;
pthread mutex lock (&fpp->flink->mutex) ;
fbp->flink->blink = fbp->blink;

pthread mutex unlock (&fpp->blink->mutex);
pthread mutex unlock (&fpp->flink->mutex);
pthread mutex unlock (&fpp->mutex) ;

CS33 Intro to Computer Systems XXXII-11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Multiple Pulls

CS33 Intro to Computer Systems

XXXI1-12

Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Multiple Pulls

CS33 Intro to Computer Systems

XXXI1-13

Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Taking Multiple Locks

funcl () { func2 () {
pthread mutex lock (&ml) ; pthread mutex lock (&m2);
/* use object 1 */ /* use object 2 */
pthread mutex lock (&m2) ; pthread mutex lock (&ml) ;
/* use objects 1 and 2 */ /* use objects 1 and 2 */
pthread mutex unlock (&m2) ; pthread mutex unlock (&ml) ;
pthread mutex unlock (&ml) ; pthread mutex unlock (&m2) ;

CS33 Intro to Computer Systems XXXII-14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Preventing Deadlock

thread
a

thread
b

CS33 Intro to Computer Systems XXXII-15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Taking Multiple Locks, Safely

procl () { procZ () A
pthread mutex lock (&ml) ; pthread mutex lock (&ml) ;
/* use object 1 */ /* use object 1 */
pthread mutex lock (&m2) ; pthread mutex lock (&m2) ;
/* use objects 1 and 2 */ /* use objects 1 and 2 */
pthread mutex unlock (&m2) ; pthread mutex unlock (&m2) ;
pthread mutex unlock (&ml) ; pthread mutex unlock (&ml) ;

CS33 Intro to Computer Systems XXXII-16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Dining Philosophers Problem

b

£
=

CS33 Intro to Computer Systems XXXII-17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Practical Issues with Mutexes

* Used a lot in multithreaded programs

— speed is really important

» shouldn’t slow things down much in the success
case

— checking for errors slows things down (a lot)
» thus errors aren’t checked by default

CS33 Intro to Computer Systems XXXII-18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Set Up

int pthread mutex init (pthread mutex t *mutexp,
pthread mutexattr t *attrp)

int pthread mutex destroy (pthread mutex t *mutexp)
int pthread mutexattr init (pthread mutexattr t *attrp)

int pthread mutexattr destroy(pthread mutexattr t *attrp)

CS33 Intro to Computer Systems XXXII-19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Stupid (i.e., Common) Mistakes ...

pthread mutex lock (&ml);
pthread mutex lock(&ml);
// really meant to lock m2

pthread mutex lock (&ml);

pthread mutex unlock (&m2) ;

// really meant to unlock ml

CS33 Intro to Computer Systems XXXII-20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Runtime Error Checking

pthread mutexattr t err chk attr;

pthread mutexattr init (&err chk attr);

pthread mutexattr settype (&err chk attr,
PTHREAD MUTEX ERRORCHECK) ;

pthread mutex t mutl;
pthread mutex init (&mutl, &err chk attr);

pthread mutex lock (&mutl);

if (pthread mutex lock(&mutl) == EDEADLK)
fprintf (stderr, "error caught at runtime\n");

if (pthread mutex unlock (&mut2) == EPERM)
fprintf (stderr, "another error: you didn’t lock it!\n");

CS33 Intro to Computer Systems XXXII-21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Producer-Consumer Problem

Consumer Producer

N

CS33 Intro to Computer Systems XXX]II-22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Guarded Commands

when (guard) |
/%
once the guard i1s true, execute this

code atomically

*/

CS33 Intro to Computer Systems XXXII-23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Semaphores

* P(S) operation:
when (S > 0) [
S =S — 1;
]
* V(S) operation:
[S = S + 1;]

CS33 Intro to Computer Systems XXXII-24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

The function func is
Quiz 2 called concurrently by n
threads. What'’s the
maximum value that

semaphore S = 1; count will take on?
int count = 0O;
a) 1
void func() { b) 2
P(S); c) n
(5 d) indeterminate
count++;
« P(S) operation:
count—-; when (S > 0) |
V(S) ;] oS
} « V(S) operation:
[S = S + 1;]

CS33 Intro to Computer Systems XXXII-25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Producer/Consumer with

Semaphores
Semaphore empty = BSIZE;
Semaphore occupied = 0O;
int nextin = 0;
int nextout = 0;
void Produce (char i1item) { char Consume () {
P (empty) ; char item;
buf [nextin] = 1tem; P (occupied) ;
i1f (++nextin >= BSIZE) item = buf[nextout];
nextin = 0; i1f (++tnextout >= BSIZE)
V (occupied) ; nextout = 0;
} V (empty) ;

return 1tem;

CS33 Intro to Computer Systems XXXII-26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

POSIX Semaphores

#include <semaphore.h>

int sem init (sem_ t *semaphore, int pshared, int 1nit);
int sem destroy(sem t *semaphore);
int sem wait (sem t *semaphore);
/* P operation */
int sem trywailt (sem t *semaphore);
/* conditional P operation */
int sem post(sem t *semaphore);

/* V operation */

CS33 Intro to Computer Systems XXXII-27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Producer-Consumer with POSIX
Semaphores

sem 1init (&empty, 0, BSIZE);
sem init (&occupied, 0, 0);

int nextin = 0;
int nextout = 0;
volid produce (char i1tem) ({ char consume () |
char i1tem;
sem walt (&empty) ; sem walt (&occupied) ;
buf [nextin] = 1tem; i1tem = buf[nextout];
if (++nextin >= BSIZE) i1f (++nextout >= BSIZE)
nextin = 0; nextout = 0;
sem post (&occupied) ; sem post (&empty) ;
} return item;

}

CS33 Intro to Computer Systems XXX]II-28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 3

Does the POSIX version of the producer-
consumer solution work with multiple
producers and consumers?

a) Yes

b) No, but it can be made to work by using
mutexes to make sure that only one thread
iIs executing the producer code at a time and
only one thread is executing the consumer
code at a time

c) It can’t easily be made to work

CS33 Intro to Computer Systems XXXII-29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Start/Stop

« Start/Stop interface

void wait for start (state_t *s);

void start (state t *s);

void stop(state t *s);

CS33 Intro to Computer Systems XXXII-30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Start/Stop

« Start/Stop interface

void wait for start (state_t *s) {
if (s->state == stopped)
sleep () ;
}
void start (state_t *s) {
state = started;
wakeup all();
}
void stop(state t *s) {
state = stopped;

}

CS33 Intro to Computer Systems XXXII-31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Start/Stop
» Start/Stop interface

void wait for start(state t *s) {
pthread mutex lock (&s->mutex);
i1f (s->state == stopped) {
pthread mutex unlock (&s->mutex) ;
sleep () ;
else pthread mutex unlock (&s->mutex) ;
}
void start (state_t *s) {
pthread mutex lock (&s->mutex) ;
state = started;
wakeup all();
pthread mutex unlock (&s->mutex) ;

}

CS33 Intro to Computer Systems XXXII-32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Start/Stop
« Start/Stop interface

void wait for start(state t *s) {
pthread mutex lock (&s->mutex);
i1f (s->state == stopped) {
sleep () ;
pthread mutex unlock (&s->mutex) ;
}
void start (state_t *s)
pthread mutex lock (&s->mutex) ;
state = started;
wakeup all();

pthread mutex unlock (&s->mutex) ;

CS33 Intro to Computer Systems XXXII-33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Start/Stop
» Start/Stop interface

void wait for start(state t *s) {
pthread mutex lock (&s->mutex);
while (s->state == stopped)
pthread cond wait (&s->queue, &s->mutex);
pthread mutex unlock (&s->mutex) ;
}
void start (state_t *s)
pthread mutex lock (&s->mutex) ;
s—->state = started;
pthread cond broadcast (&s->queue) ;

pthread mutex unlock (&s->mutex) ;

CS33 Intro to Computer Systems XXXII-34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Condition Variables

when (guard) [pthread mutex lock (&mutex);
statement 1; while (!guard)
pthread cond wailt (
statement n; &cond_var, gmutex) ;
] statement 1;

statement n;
pthread mutex unlock (&mutex) ;

// code modifying the guard: pthread mutex lock (&mutex);
// code modifying the guard:

pthread cond broadcast (
&cond var) ;
pthread mutex unlock (&mutex);

CS33 Intro to Computer Systems XXXII-35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Set Up

int pthread cond 1init (pthread cond t *cvp,
pthread condattr t *attrp)

int pthread cond destroy(pthread cond t *cvp)
int pthread condattr init (pthread condattr t *attrp)

int pthread condattr destroy(pthread condattr t *attrp)

CS33 Intro to Computer Systems XXXII-36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

PC with Condition Variables (1)

typedef struct buffer {
pthread mutex t m;
pthread cond t more space;
pthread cond t more i1tems;

int next in;
int next out;
int empty;

char buf [BSIZE];

} buffer t;

CS33 Intro to Computer Systems XXXII-37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

PC with Condition Variables (2)

void produce (buffer t *Db,

char item) ({

pthread mutex lock (&b->m);
while (! (b->empty > 0))
pthread cond wailt (
&b->more space, &b->m);

b->buf [b->nextin] = item;
if (++ (b—->nextin) == BSIZE)
b->nextin = 0;

b->empty--;

pthread cond signal (
&b->more items) ;

pthread mutex unlock (&b->m) ;

char consume (buffer t *b) {

char item;
pthread mutex lock (&b->m);
while (! (b—->empty < BSIZE))

pthread cond wailt (

&b->more items, &b->m);

item = b->buf|[b->nextout];
if (++ (b->nextout) == BSIZE)

b->nextout = 0;
b->empty++;
pthread cond signal (

&b->more space) ;

pthread mutex unlock (&b->m) ;
return item;

CS33 Intro to Computer Systems

XXXI1-38

Copyright © 2023 Thomas W. Doeppner. All rights reserved.

