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CS 33
Multithreaded Programming IV



Here is the C code for searching our binary search tree, which returns either a pointer to 
the node containing the key or null if no such node exists. Note that search assumes 
that the key being searched for is not in the parent node. If the parentp argument is not 
null, then it points to a location into which the address of the returned node’s parent is 
stored if the key is found, otherwise it returns a pointer to what would be the parent of 
the node containing the key if the key were in the tree.
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C Code: Search

Node *search(int key,
    Node *parent, Node **parentp) {
  Node *next;
  Node *result;
  if (key < parent->key) {
    if ((next = parent->lchild)
        == 0) {
      result = 0;
    } else {
      if (key == next->key) {
        result = next;
      } else {
        result = search(key,
            next, parentpp);
        return result;
      }
    }

} else {
    if ((next = parent->rchild)
        == 0) {
      result = 0;
    } else {
      if (key == next->key) {
        result = next;
      } else {
        result = search(key,
            next, parentpp);
        return result;
      }
    }
  }
  if (parentpp != 0)
    *parentpp = parent;
  return result;
}



Here’s the C code for adding a node to the binary search tree.
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C Code: Add

int add(int key) {
  Node *parent, *target, *newnode;
  if ((target = search(key, &head, &parent)) != 0) {
    return 0;
  }
  newnode = malloc(sizeof(Node));
  newnode->key = key;
  newnode->lchild = newnode->rchild = 0;
  if (name < parent->name)
    parent->lchild = newnode;
  else
    parent->rchild = newnode;
  return 1;
}



An easy way to allow multiple threads to manipulate the search tree concurrently is to 
employ what’s known as coarse-grained synchronization: we associate a readers-
writers lock with the entire tree. A thread that is just searching the tree for a value 
should take a read lock. A thread attempting to modify the tree, either adding or deleting 
a node, should take a write lock.
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C Code: Add 
with Coarse-Grained Synchronization

int add(int key) {
  Node *parent, *target, *newnode;
  pthread_rwlock_wrlock(&tree_lock);
  if ((target = search(key, &head, &parent)) != 0) {
    pthread_rwlock_unlock(&tree_lock);
    return 0;
  }
  newnode = malloc(sizeof(Node));
  newnode->key = key;
  newnode->lchild = newnode->rchild = 0;
  if (name < parent->name)
    parent->lchild = newnode;
  else
    parent->rchild = newnode;
  pthread_rwlock_unlock(&tree_lock);
  return 1;
}



Let’s now look at what’s known as fine-grained synchronization, where we associate a 
readers-writers lock with each node of the tree. The idea is that, unlike the case for 
coarse-grained synchronization, we can have multiple threads working on different parts 
of the tree at once. The first step in making this work is to modify the search algorithm 
so as to lock and unlock the nodes’ rw locks appropriately. As a first attempt, we use the 
simple algorithm of first locking a node, then determining, based on its key’s value, 
which child we go to next, then unlocking the node and repeating with the child.
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Binary Search Tree
with Fine-Grained Synchronization I
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Binary Search Tree
with Fine-Grained Synchronization II
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This approach could lead to trouble if after we obtain a pointer to a child and unlock a 
node, some other thread deletes the child (and other nodes).
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To avoid such problems, once we get a pointer to a child, we should lock the child’s rw 
lock, and then unlock the parent’s rw lock. This prevents other threads from deleting the 
child while we are using it.
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Doing It Right …
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And here is the fine-grained search function. Note that its last argument indicates 
whether it’s called by a thread that’s only searching the tree, or by a thread that intends 
to modify the tree. Note also that the routine assumes that the parent node is locked by 
the caller (and that the key being searched for is not in the parent node).

If a node containing the key is found, the found node is locked and a pointer to it is 
returned. If parentp is non-null, then the final parent node is locked and a pointer to it 
is stored in the location pointed to by parentp (the code for this is on the next slide).
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C Code: Fine-Grained Search I

enum locktype {l_read, l_write};

#define lock(lt, lk) ((lt) == l_read)?
      pthread_rwlock_rdlock(lk):
      pthread_rwlock_wrlock(lk)

Node *search(int key,
    Node *parent, Node **parentp,
    enum locktype lt) {
   // parent is locked on entry
  Node *next;
  Node *result;
  if (key < parent->key) {
    if ((next = parent->lchild)
        == 0) {
      result = 0;

} else {
      lock(lt, &next->lock);
      if (key == next->key) {
        result = next;
      } else {
        pthread_rwlock_unlock(

            &parent->lock);
        result = search(key,
            next, parentpp, lt);
        return result;
      }
    }
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C Code: Fine-Grained Search II

} else {
    if ((next = parent->rchild)
        == 0) {
      result = 0;
    } else {
      lock(lt, &next->lock);
      if (key == next->key) {
        result = next;

} else {
        pthread_rwlock_unlock(
            &parent->lock);
        result = search(key,
            next, parentpp, lt);
        return result;
      }
    }
  }
  if (parentpp != 0) {
    // parent remains locked
    *parentpp = parent;
  } else
    pthread_rwlock_unlock(
        &parent->lock);
  return result;
}
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Quiz 1

The search function takes read locks if the 
purpose of the search is for a query, but takes 
write locks if the purpose is for an add or a 
delete. Would it make sense for it always to take 
read locks until it reaches the target of the 
search, then take a write lock just for that 
target?

a) Yes, since doing so allows more 
concurrency

b) No, it would work, but there would be no 
increase in concurrency

c) No, it would not work



Here is the add routine modified for fine-grained synchronization.
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C Code: Add 
with Fine-Grained Synchronization I

int add(int key) {
  Node *parent, *target, *newnode;
  pthread_rwlock_wrlock(&head->lock);
  if ((target = search(key, &head, &parent,
      l_write)) != 0) {
    pthread_rwlock_unlock(&target->lock);
    pthread_rwlock_unlock(&parent->lock);
    return 0;
  }
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C Code: Add 
with Fine-Grained Synchronization II

newnode = malloc(sizeof(Node));
  newnode->key = key;
  newnode->lchild = newnode->rchild = 0;
  pthread_rwlock_init(&newnode->lock, 0);
  if (name < parent->name)
    parent->lchild = newnode;
  else
    parent->rchild = newnode;
  pthread_rwlock_unlock(&parent->lock);
  return 1;
}
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Quiz 2

The add function calls malloc. Could we use for 
this the malloc that you’ll finish by midnight, or 
do we need a different one that’s safe for use in 
multithreaded programs?

a) Since the calling thread has a write lock on the 
parent of the new node, it’s safe to call the 
standard malloc

b) Even if the calling thread didn’t have a write lock 
on the parent, it would be safe to call the standard 
malloc

c) We need a new malloc, one that’s safe for use in 
multithreaded programs



A barrier is a conceptually simple and very useful synchronization construct. A barrier 
is established for some predetermined number of threads; threads call the barrier’s wait 
routine to enter it; no thread may exit the barrier until all threads have entered it.
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Barriers



Is this a correct solution?

It works once, but, since it doesn't reset count to zero, it won't work more than once.
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A Solution?

pthread_mutex_lock(&m);
if (++count == number) {
  pthread_cond_broadcast(&cond_var);
} else while (!(count == number)) {
  pthread_cond_wait(&cond_var, &m);
}
pthread_mutex_unlock(&m);



How about this?

We can try all possible places to reset count to zero – none of them work.
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How About This?

pthread_mutex_lock(&m);
if (++count == number) {
  pthread_cond_broadcast(&cond_var);
  count = 0;
} else while (!(count == number)) {
  pthread_cond_wait(&cond_var, &m);
}

pthread_mutex_unlock(&m);
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And This ...

pthread_mutex_lock(&m);
if (++count == number) {
  pthread_cond_broadcast(&cond_var);
  count = 0;
} else {
  pthread_cond_wait(&cond_var, &m);
}

pthread_mutex_unlock(&m);

Quiz 3
Does it work?

a) definitely
b) probably
c) rarely
d) never



Implementing barriers in POSIX threads is not trivial. Since count, the number of 
threads that have entered the barrier, will be reset to 0 once all threads have entered, we 
can’t use it in the guard. But, nevertheless, we still must wakeup all waiting threads as 
soon as the last one enters the barrier. We accomplish this with the generation global 
variable and the my_generation local variable. An entering thread increments count 
and joins the condition-variable queue if it’s still less than the target number of threads. 
However, before it joins the queue, it copies the current value of generation into its local 
my_generation and then joins the queue of waiting threads, via pthread_cond_wait, 
until my_generation is no longer equal to generation. When the last thread enters the 
barrier, it increments generation and wakes up all waiting threads. Each of these sees 
that its private my_generation is no longer equal to generation, and thus the last 
thread must have entered the barrier.
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Barrier in POSIX Threads

pthread_mutex_lock(&m);
if (++count < number) {
  int my_generation = generation;
  while(my_generation == generation) {
    pthread_cond_wait(&waitQ, &m);
  }
} else {
  count = 0;
  generation++;
  pthread_cond_broadcast(&waitQ);
}
pthread_mutex_unlock(&m);



As part of POSIX 1003.1j, barriers were introduced. Unlike other POSIX-threads objects, 
they cannot be statically initialized; one must call pthread_barrier_init and specify the 
number of threads that must enter the barrier. In some applications it might be 
necessary for one thread to be designated to perform some sort function on behalf of all 
of them when all exit the barrier. Thus pthread_barrier_wait returns 
PTHREAD_BARRIER_SERIAL_THREAD in one thread and zero in the others on success.
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More From POSIX!

int pthread_barrier_init(pthread_barrier_t *barrier,
  pthread_barrierattr_t *attr,
  unsigned int count);
int pthread_barrier_destroy(
      pthread_barrier_t *barrier);
int pthread_barrier_wait(
      pthread_barrier_t *barrier);



Consider the implementation of pthread_cond_wait and pthread_cond_signal shown in 
the slide. It has the property that calls to pthread_cond_signal are “remembered” if 
done when no threads are waiting on the condition-variable queue. While this is not a 
desirable property, it simplifies the implementation. To allow such implementations, the 
semantics of pthread_cond_wait are less restrictive than they should be.
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Why cond_wait is Weird …

pthread_cond_wait(pthread_cond_t *c, pthread_mutex_t *m) {
   pthread_mutex_unlock(m);
   sem_wait(c->sem);
   pthread_mutex_lock(m);
}

pthread_cond_signal(pthread_cond_t *c) {
   sem_post(c->sem);
}



Deviations are things that modify a thread’s normal flow of control. Unix has long had 
signals, and these must be dealt with in multithreaded improvements to Unix. There are 
actually two fairly different classes of signals: asynchronous signals and synchronous 
signals. The former are caused by events beyond the process’s control, such as I/O 
events, clock events, system calls issued by other processes, etc. The latter are 
responses to what the current thread has just done, such as divide by zero, addressing 
exceptions, etc.

Cancellation is a new concept that pertains strictly to multithreaded programming. It is 
the means by which one thread can request the termination of another and provides a 
way for the terminating thread to terminate cleanly.
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Deviations

• Signals

• Cancellation
– tamed lightning

vs.



Asynchronous signals were designed (like almost everything else) with single-threaded 
processes in mind. A signal is delivered to the process; if the signal is caught, the 
process stops whatever it is doing, deals with the signal, and then resumes normal 
processing. But what happens when a signal is delivered to a multithreaded process? 
Which thread or threads deal with it?

Asynchronous signals, by their very nature, are handled asynchronously. But one of the 
themes of multithreaded programming is that threads are a cure for asynchrony. Thus, 
we should be able to use threads as a means of getting away from the “drop whatever 
you are doing and deal with me” approach to asynchronous signals.

Synchronous signals often are an indication that something has gone wrong: there really 
is no point continuing execution in this part of the program. Traditional Unix 
approaches for dealing with this bad news are not terribly elegant.
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Signals

•

 
– who gets them?
– who needs them?

 
•

 
– how do you respond to them?



The standard Unix model has a process-wide signal mask and a vector indicating what 
is to be done in response to each kind of signal. When a signal is delivered to a process, 
an indication is made that this signal is pending. If the signal is unmasked, then the 
vector is examined to determine the response: to suspend the process, to resume the 
process, to terminate the process, to ignore the signal entirely, or to invoke a signal 
handler.

A number of issues arise in translating this model into a multithreaded-process model. 
First of all, if we invoke a signal handler, which thread or threads should execute the 
handler? What seems to be closest to the spirit of the original signal semantics is that 
exactly one thread should execute the handler. Which one? The consensus is that it 
really does not matter, just as long as exactly one thread executes the signal handler. 
But what about the signal mask? Since one sets masks depending on a thread’s local 
behavior, it makes sense for each thread to have its own private signal mask. Thus, a 
signal is delivered to any one thread that has the signal unmasked (if more than one 
thread has the signal unmasked, a thread is chosen randomly to handle the signal). If 
all threads have the signal masked, then the signal remains pending until some thread 
unmasks it.

A related issue is the vector indicating the response to each signal. Should there be one 
such vector per thread? If so, what if one thread specifies process termination in 
response to a signal, while another thread supplies a handler? For reasons such as this, 
it was decided that, even for multithreaded processes, there would continue to be a 
single, process-wide signal-disposition vector.
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Dealing with Signals

• Per-thread signal masks
• Per-process signal vectors
• One delivery per signal



Signals may be sent to individual threads using pthread_kill. Though the targeted 
thread will handle the signal, the behavior is as set for the entire process using 
sigaction. Each thread may independently block and unblock signals using 
pthread_sigmask. 
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Signals and Threads

int pthread_kill(pthread_t thread, int signo);

– thread equivalent of kill

int pthread_sigmask(int how,
const sigset_t *newmask,
sigset_t oldmask);

– thread equivalent of sigprocmask



The slide shows the standard approach for dealing with signals: one sets up a handler 
that’s invoked by the thread that received the signal.
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Asynchronous Signals (1)

int main( ) {
void handler(int);
signal(SIGINT, handler);

  ... 

}

void handler(int sig) {
... 

}



Here we have the example we saw a few weeks ago of the reason for requiring that signal 
handlers call only async-signal-safe functions.
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Asynchronous Signals (2)

int main( ) {
 void handler(int);

 signal(SIGINT, handler);

 ...  // complicated program

 printf("important message: "
   "%s\n", message);

 ...  // more program

}

void handler(int sig) {

 ...  // deal with signal

 printf("equally important "
   "message: %s\n", message);
}



Does the use of mutexes help with the issues of asynchronous signals?
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Quiz 4

int main( ) {
 void handler(int);

 signal(SIGINT, handler);

 ...  // complicated program

  pthread_mutex_lock(&mut);
 printf("important message: "
   "%s\n", message);
  pthread_mutex_unlock(&mut);

 ...  // more program

}

void handler(int sig) {

 ...  // deal with signal

  pthread_mutex_lock(&mut);
 printf("equally important "
   "message: %s\n", message);
  pthread_mutex_unlock(&mut);
}

Does this work?
a) always
b) sometimes
c) never



Here we use a different technique for dealing with the signal. Rather than have the 
thread performing the long-running computation be interrupted by the signal, we 
dedicate a thread to dealing with the signal. We make use of a new signal-handling 
routine, sigwait. This routine puts its caller to sleep until one of the signals specified in 
its argument occurs, at which point the call returns and the number of the signal that 
occurred is stored in the location pointed to by the second argument. As is done here, 
sigwait is normally called with the signals of interest masked off; sigwait responds to 
signals even if they are masked. (Note also that a new thread inherits the signal mask of 
its creator.)

Among the advantages of this approach is that there are no concerns about async-signal 
safety since a signal handler is never invoked. The signal-handling thread waits for 
signals synchronously — it is not interrupted. Thus, it is safe for it to use even mutexes, 
condition variables, and semaphores from inside of the display routine. Another 
advantage is that, if this program is run on a multiprocessor, the “signal handling” can 
run in parallel with the mainline code, which could not happen with the previous 
approach.
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Synchronizing Asynchrony

computation_state_t  state;
sigset_t set;

int main( ) {
 pthread_t thread;

 sigemptyset(&set);
 sigaddset(&set, SIGINT);
 pthread_sigmask(SIG_BLOCK,
  &set, 0);
 pthread_create(&thread, 0,
  monitor, 0);
 long_running_procedure( );
}

void *monitor(void *dummy) {
 int sig;
 while (1) {
  sigwait(&set, &sig);
  display(&state);
 }
 return(0);
}



In a number of situations one thread must tell another to cease whatever it is doing. For 
example, suppose we’ve implemented a chess-playing program by having multiple 
threads search the solution space for the next move. If one thread has discovered a quick 
way of achieving a checkmate, it would want to notify the others that they should stop 
what they’re doing, the game has been won.

One might think that this is an ideal use for per-thread signals, but there’s a cleaner 
mechanism for doing this sort of thing in POSIX threads, called cancellation.
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Cancellation



This code is invoked by a thread (as its first function). The thread reads values from 
stdin, which it then puts into a singly linked list that it allocates on the fly, and returns 
a pointer to the list.

Suppose our thread is forced to terminate in the midst of its execution (some other 
thread invokes the operation pthread_cancel on it). What sort of problems might ensue?
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Sample Code

void *thread_code(void *arg) {
  node_t *head = 0;
  while (1) {
    node_t *nodep;
    nodep = (node_t *)malloc(sizeof(node_t));
    nodep->next = head;
    head = nodep;    
    if (read(0, &node->value,
        sizeof(node->value)) == 0) {
      free(nodep);
      break;
    }
  }
  return head;
}

pthread_cancel(thread);



We have two concerns about the forced termination of threads resulting from 
cancellation: a thread might be in the middle of doing something important that it must 
complete before self-destructing; and a canceled thread must be given the opportunity to 
clean up.
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Cancellation Concerns

• Getting cancelled at an inopportune moment
• Cleaning up



A thread issues a cancel request by calling pthread_cancel, supplying the ID of the 
target thread as the argument. Associated with each thread is some state information 
known as its cancellation state and its cancellation type. When a thread receives a 
cancel request, it is marked indicating that it has a pending cancel. The next issue is 
when the thread should notice and act upon the cancel. This is governed by the 
cancellation state: whether cancels are enabled or disabled and by the cancellation 
type: whether the response to cancels is asynchronous or deferred. If cancels are 
disabled, then the cancel remains pending but is otherwise ignored until cancels are 
enabled. If cancels are enabled, they are acted on as soon as they are noticed if the 
cancellation type is asynchronous. Otherwise, i.e., if the cancellation type is deferred, 
the cancel is acted upon only when the thread reaches a cancellation point.

Cancellation points are intended to be well defined points in a thread’s execution at 
which it is prepared to be canceled. They include pretty much all system and library 
calls in which the thread can block, with the exception of pthread_mutex_lock. In 
addition, a thread may call pthread_testcancel, which has no function other than being 
a cancellation point.

The default is that cancels are enabled and deferred. One can change the cancellation 
state of a thread by using the routines shown in the slide. Calls to 
pthread_setcancelstate and pthread_setcanceltype return the previous value of the 
affected portion of the cancellability state.
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Cancellation State

• Pending cancel
– pthread_cancel(thread)

• Cancels enabled or disabled
– int pthread_setcancelstate(

{PTHREAD_CANCEL_DISABLE
PTHREAD_CANCEL_ENABLE},
&oldstate)

• Asynchronous vs. deferred cancels
– int pthread_setcanceltype(
  {PTHREAD_CANCEL_ASYNCHRONOUS,
  PTHREAD_CANCEL_DEFERRED},
  &oldtype)



The slide lists all of the required cancellation points in POSIX.

The function pthread_testcancel is strictly a cancellation point — it has no other 
function. If there are no pending cancels when it is called, it does nothing and simply 
returns.
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Cancellation Points

• aio_suspend
• close
• creat
• fcntl (when F_SETLCKW is 

the command)
• fsync
• mq_receive
• mq_send
• msync
• nanosleep
• open
• pause
• pthread_cond_wait
• pthread_cond_timedwait
• pthread_join

• pthread_testcancel
• read
• sem_wait
• sigwait
• sigwaitinfo
• sigsuspend
• sigtimedwait
• sleep
• system
• tcdrain
• wait
• waitpid
• write



When a thread acts upon a cancel, its ultimate fate has been established, but it first gets 
a chance to clean up. Associated with each thread may be a stack of cleanup handlers. 
Such handlers are pushed onto the stack via calls to pthread_cleanup_push and 
popped off the stack via calls to pthread_cleanup_pop. Thus, when a thread acts on a 
cancel or when it calls pthread_exit, it calls each of the cleanup handlers in turn, giving 
the argument that was supplied as the second parameter of pthread_cleanup_push. 
Once all the cleanup handlers have been called, the thread terminates.

The two functions pthread_cleanup_push and pthread_cleanup_pop are intended to 
act as left and right parentheses, and thus should always be paired (in fact, they may 
actually be implemented as macros: the former contains an unmatched “{“, the latter an 
unmatched “}”). The argument to the latter function indicates whether or not the cleanup 
function should be called as a side effect of calling pthread_cleanup_pop.
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Cleaning Up

• void pthread_cleanup_push((void)(*routine)(void *),
 void *arg)

• void pthread_cleanup_pop(int execute)



Here we’ve added a cleanup handler to our sample code. Note that our example has just 
one cancellation point: read. The cleanup handler iterates through the list, deleting each 
element.
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Sample Code, Revisited
void *thread_code(void *arg) {
  node_t *head = 0;
  pthread_cleanup_push(
      cleanup, &head);
  while (1) {
    node_t *nodep;
    nodep = (node_t *)
       malloc(sizeof(node_t));
    nodep->next = head;
    head = nodep;     
    if (read(0, &nodep->value,
        sizeof(nodep->value)) == 0) {
      free(nodep);
      break;
    }
  }
  pthread_cleanup_pop(0);
  return head;
}

void cleanup(void *arg) {
  node_t **headp = arg;
  while(*headp) {
    node_t *nodep = head->next;
    free(*headp);
    *headp = nodep;

  }
}



Whether threads are using mutexes or readers/writers locks when manipulating a 
search tree, if we have to deal with cancellation points in the middle of such operations, 
things can get pretty complicated and error-prone. Thus, the operations to lock mutexes 
and readers/writers locks are not cancellation points. (Note, however, that for the case 
of readers/writers locks, POSIX permits waiting for readers/writers locks to be 
cancellation points, for the sake of vendors who have poor implementations of them. 
Neither Linux nor OSX implements such waiting as cancellation points.)

CS33 Intro to Computer Systems XXXIV–38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

A More Complicated Situation …
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Start/Stop
• Start/Stop interface

void wait_for_start(state_t *s){
  pthread_mutex_lock(&s->mutex);
  while(s->state == stopped)
    pthread_cond_wait(&s->queue, &s->mutex);
  pthread_mutex_unlock(&s->mutex);
}
void start(state_t *s) {
  pthread_mutex_lock(&s->mutex);
  s->state = started;
  pthread_cond_broadcast(&s->queue);
  pthread_mutex_unlock(&s->mutex);
}



CS33 Intro to Computer Systems XXXIV–40 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Start/Stop
• Start/Stop interface

void wait_for_start(state_t *s){
  pthread_mutex_lock(&s->mutex);
  while(s->state == stopped)
    pthread_cond_wait(&s->queue,
      &s->mutex);
  pthread_mutex_unlock(&s->mutex);
}
void start(state_t *s) {
  pthread_mutex_lock(&s->mutex);
  s->state = started;
  pthread_cond_broadcast(&s->queue);
  pthread_mutex_unlock(&s->mutex);
}

Not a Quiz

You’re in charge of 
designing POSIX threads. 
Should pthread_cond_wait 
be a cancellation point?

a) no
b) yes; cancelled 

threads must 
acquire mutex 
before invoking 
cleanup handler

c) yes; but they don’t 
acquire mutex



This example illustrates why it’s important that threads cancelled while in 
pthread_cond_wait must first lock the mutex before calling their cleanup handler. In 
this example, it’s important (for an unspecified reason) that read be called while the 
mutex is locked and should_wait is false. If the thread receives a cancel and 
cleanup_handler is called, it won’t be known whether the cancel occurred within 
pthread_cond_wait or within read. Thus cleanup_handler must perform the same 
actions in both cases. Since the thread must unlock the mutex if the cancel occurred 
while the thread was in read, it must also unlock the mutex if the cancel occurred while 
the thread was in pthread_cond_wait. Thus, it’s important that a thread cancelled while 
in pthread_cond_wait lock the mutex before it calls its cleanup handler, so that it’s 
locked when the thread enters the cleanup handler.
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Cancellation and Conditions

pthread_mutex_lock(&m);
pthread_cleanup_push(cleanup_handler, &m);
while(should_wait)
 pthread_cond_wait(&cv, &m);

read(0, buffer, len);   // read is a cancellation point

pthread_cleanup_pop(1);



Here we use phtread_mutex_unlock as the cleanup handler for our start/stop interface.
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Start/Stop
• Start/Stop interface

void wait_for_start(state_t *s){
     pthread_mutex_lock(&s->mutex);
     pthread_cleanup_push(
    pthread_mutex_unlock, &s);

  while(s->state == stopped)
    pthread_cond_wait(&s->queue, &s->mutex);
  pthread_cleanup_pop(1);
}
void start(state_t *s) {
  pthread_mutex_lock(&s->mutex);
  s->state = started;
  pthread_cond_broadcast(&s->queue);
  pthread_mutex_unlock(&s->mutex);
}


