
CS33 Intro to Computer Systems XXXIV–1 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

CS 33
Multithreaded Programming IV

Here is the C code for searching our binary search tree, which returns either a pointer to
the node containing the key or null if no such node exists. Note that search assumes
that the key being searched for is not in the parent node. If the parentp argument is not
null, then it points to a location into which the address of the returned node’s parent is
stored if the key is found, otherwise it returns a pointer to what would be the parent of
the node containing the key if the key were in the tree.

CS33 Intro to Computer Systems XXXIV–2 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

C Code: Search

Node *search(int key,
 Node *parent, Node **parentp) {
 Node *next;
 Node *result;
 if (key < parent->key) {
 if ((next = parent->lchild)
 == 0) {
 result = 0;
 } else {
 if (key == next->key) {
 result = next;
 } else {
 result = search(key,
 next, parentpp);
 return result;
 }
 }

} else {
 if ((next = parent->rchild)
 == 0) {
 result = 0;
 } else {
 if (key == next->key) {
 result = next;
 } else {
 result = search(key,
 next, parentpp);
 return result;
 }
 }
 }
 if (parentpp != 0)
 *parentpp = parent;
 return result;
}

Here’s the C code for adding a node to the binary search tree.

CS33 Intro to Computer Systems XXXIV–3 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

C Code: Add

int add(int key) {
 Node *parent, *target, *newnode;
 if ((target = search(key, &head, &parent)) != 0) {
 return 0;
 }
 newnode = malloc(sizeof(Node));
 newnode->key = key;
 newnode->lchild = newnode->rchild = 0;
 if (name < parent->name)
 parent->lchild = newnode;
 else
 parent->rchild = newnode;
 return 1;
}

An easy way to allow multiple threads to manipulate the search tree concurrently is to
employ what’s known as coarse-grained synchronization: we associate a readers-
writers lock with the entire tree. A thread that is just searching the tree for a value
should take a read lock. A thread attempting to modify the tree, either adding or deleting
a node, should take a write lock.

CS33 Intro to Computer Systems XXXIV–4 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Binary Search Tree
with Coarse-Grained Synchronization

-1

6

4 9

1 5 8 11

CS33 Intro to Computer Systems XXXIV–5 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

C Code: Add
with Coarse-Grained Synchronization

int add(int key) {
 Node *parent, *target, *newnode;
 pthread_rwlock_wrlock(&tree_lock);
 if ((target = search(key, &head, &parent)) != 0) {
 pthread_rwlock_unlock(&tree_lock);
 return 0;
 }
 newnode = malloc(sizeof(Node));
 newnode->key = key;
 newnode->lchild = newnode->rchild = 0;
 if (name < parent->name)
 parent->lchild = newnode;
 else
 parent->rchild = newnode;
 pthread_rwlock_unlock(&tree_lock);
 return 1;
}

Let’s now look at what’s known as fine-grained synchronization, where we associate a
readers-writers lock with each node of the tree. The idea is that, unlike the case for
coarse-grained synchronization, we can have multiple threads working on different parts
of the tree at once. The first step in making this work is to modify the search algorithm
so as to lock and unlock the nodes’ rw locks appropriately. As a first attempt, we use the
simple algorithm of first locking a node, then determining, based on its key’s value,
which child we go to next, then unlocking the node and repeating with the child.

CS33 Intro to Computer Systems XXXIV–6 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Binary Search Tree
with Fine-Grained Synchronization I

-1

6

4 9

1 5 8 11

CS33 Intro to Computer Systems XXXIV–7 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Binary Search Tree
with Fine-Grained Synchronization II

-1

6

4 9

1 5 8 11

This approach could lead to trouble if after we obtain a pointer to a child and unlock a
node, some other thread deletes the child (and other nodes).

CS33 Intro to Computer Systems XXXIV–8 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Binary Search Tree
with Fine-Grained Synchronization III

-1

4

1 5

?

To avoid such problems, once we get a pointer to a child, we should lock the child’s rw
lock, and then unlock the parent’s rw lock. This prevents other threads from deleting the
child while we are using it.

CS33 Intro to Computer Systems XXXIV–9 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Doing It Right …

-1

6

4 9

1 5 8 11

And here is the fine-grained search function. Note that its last argument indicates
whether it’s called by a thread that’s only searching the tree, or by a thread that intends
to modify the tree. Note also that the routine assumes that the parent node is locked by
the caller (and that the key being searched for is not in the parent node).

If a node containing the key is found, the found node is locked and a pointer to it is
returned. If parentp is non-null, then the final parent node is locked and a pointer to it
is stored in the location pointed to by parentp (the code for this is on the next slide).

CS33 Intro to Computer Systems XXXIV–10 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

C Code: Fine-Grained Search I

enum locktype {l_read, l_write};

#define lock(lt, lk) ((lt) == l_read)?
 pthread_rwlock_rdlock(lk):
 pthread_rwlock_wrlock(lk)

Node *search(int key,
 Node *parent, Node **parentp,
 enum locktype lt) {
 // parent is locked on entry
 Node *next;
 Node *result;
 if (key < parent->key) {
 if ((next = parent->lchild)
 == 0) {
 result = 0;

} else {
 lock(lt, &next->lock);
 if (key == next->key) {
 result = next;
 } else {
 pthread_rwlock_unlock(

 &parent->lock);
 result = search(key,
 next, parentpp, lt);
 return result;
 }
 }

CS33 Intro to Computer Systems XXXIV–11 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

C Code: Fine-Grained Search II

} else {
 if ((next = parent->rchild)
 == 0) {
 result = 0;
 } else {
 lock(lt, &next->lock);
 if (key == next->key) {
 result = next;

} else {
 pthread_rwlock_unlock(
 &parent->lock);
 result = search(key,
 next, parentpp, lt);
 return result;
 }
 }
 }
 if (parentpp != 0) {
 // parent remains locked
 *parentpp = parent;
 } else
 pthread_rwlock_unlock(
 &parent->lock);
 return result;
}

CS33 Intro to Computer Systems XXXIV–12 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 1

The search function takes read locks if the
purpose of the search is for a query, but takes
write locks if the purpose is for an add or a
delete. Would it make sense for it always to take
read locks until it reaches the target of the
search, then take a write lock just for that
target?

a) Yes, since doing so allows more
concurrency

b) No, it would work, but there would be no
increase in concurrency

c) No, it would not work

Here is the add routine modified for fine-grained synchronization.

CS33 Intro to Computer Systems XXXIV–13 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

C Code: Add
with Fine-Grained Synchronization I

int add(int key) {
 Node *parent, *target, *newnode;
 pthread_rwlock_wrlock(&head->lock);
 if ((target = search(key, &head, &parent,
 l_write)) != 0) {
 pthread_rwlock_unlock(&target->lock);
 pthread_rwlock_unlock(&parent->lock);
 return 0;
 }

CS33 Intro to Computer Systems XXXIV–14 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

C Code: Add
with Fine-Grained Synchronization II

newnode = malloc(sizeof(Node));
 newnode->key = key;
 newnode->lchild = newnode->rchild = 0;
 pthread_rwlock_init(&newnode->lock, 0);
 if (name < parent->name)
 parent->lchild = newnode;
 else
 parent->rchild = newnode;
 pthread_rwlock_unlock(&parent->lock);
 return 1;
}

CS33 Intro to Computer Systems XXXIV–15 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 2

The add function calls malloc. Could we use for
this the malloc that you’ll finish by midnight, or
do we need a different one that’s safe for use in
multithreaded programs?

a) Since the calling thread has a write lock on the
parent of the new node, it’s safe to call the
standard malloc

b) Even if the calling thread didn’t have a write lock
on the parent, it would be safe to call the standard
malloc

c) We need a new malloc, one that’s safe for use in
multithreaded programs

A barrier is a conceptually simple and very useful synchronization construct. A barrier
is established for some predetermined number of threads; threads call the barrier’s wait
routine to enter it; no thread may exit the barrier until all threads have entered it.

CS33 Intro to Computer Systems XXXIV–16 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Barriers

Is this a correct solution?

It works once, but, since it doesn't reset count to zero, it won't work more than once.

CS33 Intro to Computer Systems XXXIV–17 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

A Solution?

pthread_mutex_lock(&m);
if (++count == number) {
 pthread_cond_broadcast(&cond_var);
} else while (!(count == number)) {
 pthread_cond_wait(&cond_var, &m);
}
pthread_mutex_unlock(&m);

How about this?

We can try all possible places to reset count to zero – none of them work.

CS33 Intro to Computer Systems XXXIV–18 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

How About This?

pthread_mutex_lock(&m);
if (++count == number) {
 pthread_cond_broadcast(&cond_var);
 count = 0;
} else while (!(count == number)) {
 pthread_cond_wait(&cond_var, &m);
}

pthread_mutex_unlock(&m);

CS33 Intro to Computer Systems XXXIV–19 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

And This ...

pthread_mutex_lock(&m);
if (++count == number) {
 pthread_cond_broadcast(&cond_var);
 count = 0;
} else {
 pthread_cond_wait(&cond_var, &m);
}

pthread_mutex_unlock(&m);

Quiz 3
Does it work?

a) definitely
b) probably
c) rarely
d) never

Implementing barriers in POSIX threads is not trivial. Since count, the number of
threads that have entered the barrier, will be reset to 0 once all threads have entered, we
can’t use it in the guard. But, nevertheless, we still must wakeup all waiting threads as
soon as the last one enters the barrier. We accomplish this with the generation global
variable and the my_generation local variable. An entering thread increments count
and joins the condition-variable queue if it’s still less than the target number of threads.
However, before it joins the queue, it copies the current value of generation into its local
my_generation and then joins the queue of waiting threads, via pthread_cond_wait,
until my_generation is no longer equal to generation. When the last thread enters the
barrier, it increments generation and wakes up all waiting threads. Each of these sees
that its private my_generation is no longer equal to generation, and thus the last
thread must have entered the barrier.

CS33 Intro to Computer Systems XXXIV–20 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Barrier in POSIX Threads

pthread_mutex_lock(&m);
if (++count < number) {
 int my_generation = generation;
 while(my_generation == generation) {
 pthread_cond_wait(&waitQ, &m);
 }
} else {
 count = 0;
 generation++;
 pthread_cond_broadcast(&waitQ);
}
pthread_mutex_unlock(&m);

As part of POSIX 1003.1j, barriers were introduced. Unlike other POSIX-threads objects,
they cannot be statically initialized; one must call pthread_barrier_init and specify the
number of threads that must enter the barrier. In some applications it might be
necessary for one thread to be designated to perform some sort function on behalf of all
of them when all exit the barrier. Thus pthread_barrier_wait returns
PTHREAD_BARRIER_SERIAL_THREAD in one thread and zero in the others on success.

CS33 Intro to Computer Systems XXXIV–21 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

More From POSIX!

int pthread_barrier_init(pthread_barrier_t *barrier,
 pthread_barrierattr_t *attr,
 unsigned int count);
int pthread_barrier_destroy(
 pthread_barrier_t *barrier);
int pthread_barrier_wait(
 pthread_barrier_t *barrier);

Consider the implementation of pthread_cond_wait and pthread_cond_signal shown in
the slide. It has the property that calls to pthread_cond_signal are “remembered” if
done when no threads are waiting on the condition-variable queue. While this is not a
desirable property, it simplifies the implementation. To allow such implementations, the
semantics of pthread_cond_wait are less restrictive than they should be.

CS33 Intro to Computer Systems XXXIV–22 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Why cond_wait is Weird …

pthread_cond_wait(pthread_cond_t *c, pthread_mutex_t *m) {
 pthread_mutex_unlock(m);
 sem_wait(c->sem);
 pthread_mutex_lock(m);
}

pthread_cond_signal(pthread_cond_t *c) {
 sem_post(c->sem);
}

Deviations are things that modify a thread’s normal flow of control. Unix has long had
signals, and these must be dealt with in multithreaded improvements to Unix. There are
actually two fairly different classes of signals: asynchronous signals and synchronous
signals. The former are caused by events beyond the process’s control, such as I/O
events, clock events, system calls issued by other processes, etc. The latter are
responses to what the current thread has just done, such as divide by zero, addressing
exceptions, etc.

Cancellation is a new concept that pertains strictly to multithreaded programming. It is
the means by which one thread can request the termination of another and provides a
way for the terminating thread to terminate cleanly.

CS33 Intro to Computer Systems XXXIV–23 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Deviations

• Signals

• Cancellation
– tamed lightning

vs.

Asynchronous signals were designed (like almost everything else) with single-threaded
processes in mind. A signal is delivered to the process; if the signal is caught, the
process stops whatever it is doing, deals with the signal, and then resumes normal
processing. But what happens when a signal is delivered to a multithreaded process?
Which thread or threads deal with it?

Asynchronous signals, by their very nature, are handled asynchronously. But one of the
themes of multithreaded programming is that threads are a cure for asynchrony. Thus,
we should be able to use threads as a means of getting away from the “drop whatever
you are doing and deal with me” approach to asynchronous signals.

Synchronous signals often are an indication that something has gone wrong: there really
is no point continuing execution in this part of the program. Traditional Unix
approaches for dealing with this bad news are not terribly elegant.

CS33 Intro to Computer Systems XXXIV–24 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signals

•

– who gets them?
– who needs them?

•

– how do you respond to them?

The standard Unix model has a process-wide signal mask and a vector indicating what
is to be done in response to each kind of signal. When a signal is delivered to a process,
an indication is made that this signal is pending. If the signal is unmasked, then the
vector is examined to determine the response: to suspend the process, to resume the
process, to terminate the process, to ignore the signal entirely, or to invoke a signal
handler.

A number of issues arise in translating this model into a multithreaded-process model.
First of all, if we invoke a signal handler, which thread or threads should execute the
handler? What seems to be closest to the spirit of the original signal semantics is that
exactly one thread should execute the handler. Which one? The consensus is that it
really does not matter, just as long as exactly one thread executes the signal handler.
But what about the signal mask? Since one sets masks depending on a thread’s local
behavior, it makes sense for each thread to have its own private signal mask. Thus, a
signal is delivered to any one thread that has the signal unmasked (if more than one
thread has the signal unmasked, a thread is chosen randomly to handle the signal). If
all threads have the signal masked, then the signal remains pending until some thread
unmasks it.

A related issue is the vector indicating the response to each signal. Should there be one
such vector per thread? If so, what if one thread specifies process termination in
response to a signal, while another thread supplies a handler? For reasons such as this,
it was decided that, even for multithreaded processes, there would continue to be a
single, process-wide signal-disposition vector.

CS33 Intro to Computer Systems XXXIV–25 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Dealing with Signals

• Per-thread signal masks
• Per-process signal vectors
• One delivery per signal

Signals may be sent to individual threads using pthread_kill. Though the targeted
thread will handle the signal, the behavior is as set for the entire process using
sigaction. Each thread may independently block and unblock signals using
pthread_sigmask.

CS33 Intro to Computer Systems XXXIV–26 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Signals and Threads

int pthread_kill(pthread_t thread, int signo);

– thread equivalent of kill

int pthread_sigmask(int how,
const sigset_t *newmask,
sigset_t oldmask);

– thread equivalent of sigprocmask

The slide shows the standard approach for dealing with signals: one sets up a handler
that’s invoked by the thread that received the signal.

CS33 Intro to Computer Systems XXXIV–27 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (1)

int main() {
void handler(int);
signal(SIGINT, handler);

 ...

}

void handler(int sig) {
...

}

Here we have the example we saw a few weeks ago of the reason for requiring that signal
handlers call only async-signal-safe functions.

CS33 Intro to Computer Systems XXXIV–28 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (2)

int main() {
 void handler(int);

 signal(SIGINT, handler);

 ... // complicated program

 printf("important message: "
 "%s\n", message);

 ... // more program

}

void handler(int sig) {

 ... // deal with signal

 printf("equally important "
 "message: %s\n", message);
}

Does the use of mutexes help with the issues of asynchronous signals?

CS33 Intro to Computer Systems XXXIV–29 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Quiz 4

int main() {
 void handler(int);

 signal(SIGINT, handler);

 ... // complicated program

 pthread_mutex_lock(&mut);
 printf("important message: "
 "%s\n", message);
 pthread_mutex_unlock(&mut);

 ... // more program

}

void handler(int sig) {

 ... // deal with signal

 pthread_mutex_lock(&mut);
 printf("equally important "
 "message: %s\n", message);
 pthread_mutex_unlock(&mut);
}

Does this work?
a) always
b) sometimes
c) never

Here we use a different technique for dealing with the signal. Rather than have the
thread performing the long-running computation be interrupted by the signal, we
dedicate a thread to dealing with the signal. We make use of a new signal-handling
routine, sigwait. This routine puts its caller to sleep until one of the signals specified in
its argument occurs, at which point the call returns and the number of the signal that
occurred is stored in the location pointed to by the second argument. As is done here,
sigwait is normally called with the signals of interest masked off; sigwait responds to
signals even if they are masked. (Note also that a new thread inherits the signal mask of
its creator.)

Among the advantages of this approach is that there are no concerns about async-signal
safety since a signal handler is never invoked. The signal-handling thread waits for
signals synchronously — it is not interrupted. Thus, it is safe for it to use even mutexes,
condition variables, and semaphores from inside of the display routine. Another
advantage is that, if this program is run on a multiprocessor, the “signal handling” can
run in parallel with the mainline code, which could not happen with the previous
approach.

CS33 Intro to Computer Systems XXXIV–30 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Synchronizing Asynchrony

computation_state_t state;
sigset_t set;

int main() {
 pthread_t thread;

 sigemptyset(&set);
 sigaddset(&set, SIGINT);
 pthread_sigmask(SIG_BLOCK,
 &set, 0);
 pthread_create(&thread, 0,
 monitor, 0);
 long_running_procedure();
}

void *monitor(void *dummy) {
 int sig;
 while (1) {
 sigwait(&set, &sig);
 display(&state);
 }
 return(0);
}

In a number of situations one thread must tell another to cease whatever it is doing. For
example, suppose we’ve implemented a chess-playing program by having multiple
threads search the solution space for the next move. If one thread has discovered a quick
way of achieving a checkmate, it would want to notify the others that they should stop
what they’re doing, the game has been won.

One might think that this is an ideal use for per-thread signals, but there’s a cleaner
mechanism for doing this sort of thing in POSIX threads, called cancellation.

CS33 Intro to Computer Systems XXXIV–31 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Cancellation

This code is invoked by a thread (as its first function). The thread reads values from
stdin, which it then puts into a singly linked list that it allocates on the fly, and returns
a pointer to the list.

Suppose our thread is forced to terminate in the midst of its execution (some other
thread invokes the operation pthread_cancel on it). What sort of problems might ensue?

CS33 Intro to Computer Systems XXXIV–32 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Sample Code

void *thread_code(void *arg) {
 node_t *head = 0;
 while (1) {
 node_t *nodep;
 nodep = (node_t *)malloc(sizeof(node_t));
 nodep->next = head;
 head = nodep;
 if (read(0, &node->value,
 sizeof(node->value)) == 0) {
 free(nodep);
 break;
 }
 }
 return head;
}

pthread_cancel(thread);

We have two concerns about the forced termination of threads resulting from
cancellation: a thread might be in the middle of doing something important that it must
complete before self-destructing; and a canceled thread must be given the opportunity to
clean up.

CS33 Intro to Computer Systems XXXIV–33 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Cancellation Concerns

• Getting cancelled at an inopportune moment
• Cleaning up

A thread issues a cancel request by calling pthread_cancel, supplying the ID of the
target thread as the argument. Associated with each thread is some state information
known as its cancellation state and its cancellation type. When a thread receives a
cancel request, it is marked indicating that it has a pending cancel. The next issue is
when the thread should notice and act upon the cancel. This is governed by the
cancellation state: whether cancels are enabled or disabled and by the cancellation
type: whether the response to cancels is asynchronous or deferred. If cancels are
disabled, then the cancel remains pending but is otherwise ignored until cancels are
enabled. If cancels are enabled, they are acted on as soon as they are noticed if the
cancellation type is asynchronous. Otherwise, i.e., if the cancellation type is deferred,
the cancel is acted upon only when the thread reaches a cancellation point.

Cancellation points are intended to be well defined points in a thread’s execution at
which it is prepared to be canceled. They include pretty much all system and library
calls in which the thread can block, with the exception of pthread_mutex_lock. In
addition, a thread may call pthread_testcancel, which has no function other than being
a cancellation point.

The default is that cancels are enabled and deferred. One can change the cancellation
state of a thread by using the routines shown in the slide. Calls to
pthread_setcancelstate and pthread_setcanceltype return the previous value of the
affected portion of the cancellability state.

CS33 Intro to Computer Systems XXXIV–34 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Cancellation State

• Pending cancel
– pthread_cancel(thread)

• Cancels enabled or disabled
– int pthread_setcancelstate(

{PTHREAD_CANCEL_DISABLE
PTHREAD_CANCEL_ENABLE},
&oldstate)

• Asynchronous vs. deferred cancels
– int pthread_setcanceltype(
 {PTHREAD_CANCEL_ASYNCHRONOUS,
 PTHREAD_CANCEL_DEFERRED},
 &oldtype)

The slide lists all of the required cancellation points in POSIX.

The function pthread_testcancel is strictly a cancellation point — it has no other
function. If there are no pending cancels when it is called, it does nothing and simply
returns.

CS33 Intro to Computer Systems XXXIV–35 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Cancellation Points

• aio_suspend
• close
• creat
• fcntl (when F_SETLCKW is

the command)
• fsync
• mq_receive
• mq_send
• msync
• nanosleep
• open
• pause
• pthread_cond_wait
• pthread_cond_timedwait
• pthread_join

• pthread_testcancel
• read
• sem_wait
• sigwait
• sigwaitinfo
• sigsuspend
• sigtimedwait
• sleep
• system
• tcdrain
• wait
• waitpid
• write

When a thread acts upon a cancel, its ultimate fate has been established, but it first gets
a chance to clean up. Associated with each thread may be a stack of cleanup handlers.
Such handlers are pushed onto the stack via calls to pthread_cleanup_push and
popped off the stack via calls to pthread_cleanup_pop. Thus, when a thread acts on a
cancel or when it calls pthread_exit, it calls each of the cleanup handlers in turn, giving
the argument that was supplied as the second parameter of pthread_cleanup_push.
Once all the cleanup handlers have been called, the thread terminates.

The two functions pthread_cleanup_push and pthread_cleanup_pop are intended to
act as left and right parentheses, and thus should always be paired (in fact, they may
actually be implemented as macros: the former contains an unmatched “{“, the latter an
unmatched “}”). The argument to the latter function indicates whether or not the cleanup
function should be called as a side effect of calling pthread_cleanup_pop.

CS33 Intro to Computer Systems XXXIV–36 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Cleaning Up

• void pthread_cleanup_push((void)(*routine)(void *),
 void *arg)

• void pthread_cleanup_pop(int execute)

Here we’ve added a cleanup handler to our sample code. Note that our example has just
one cancellation point: read. The cleanup handler iterates through the list, deleting each
element.

CS33 Intro to Computer Systems XXXIV–37 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Sample Code, Revisited
void *thread_code(void *arg) {
 node_t *head = 0;
 pthread_cleanup_push(
 cleanup, &head);
 while (1) {
 node_t *nodep;
 nodep = (node_t *)
 malloc(sizeof(node_t));
 nodep->next = head;
 head = nodep;
 if (read(0, &nodep->value,
 sizeof(nodep->value)) == 0) {
 free(nodep);
 break;
 }
 }
 pthread_cleanup_pop(0);
 return head;
}

void cleanup(void *arg) {
 node_t **headp = arg;
 while(*headp) {
 node_t *nodep = head->next;
 free(*headp);
 *headp = nodep;

 }
}

Whether threads are using mutexes or readers/writers locks when manipulating a
search tree, if we have to deal with cancellation points in the middle of such operations,
things can get pretty complicated and error-prone. Thus, the operations to lock mutexes
and readers/writers locks are not cancellation points. (Note, however, that for the case
of readers/writers locks, POSIX permits waiting for readers/writers locks to be
cancellation points, for the sake of vendors who have poor implementations of them.
Neither Linux nor OSX implements such waiting as cancellation points.)

CS33 Intro to Computer Systems XXXIV–38 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

A More Complicated Situation …

-1

6

4 9

1 5 8 11

CS33 Intro to Computer Systems XXXIV–39 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Start/Stop
• Start/Stop interface

void wait_for_start(state_t *s){
 pthread_mutex_lock(&s->mutex);
 while(s->state == stopped)
 pthread_cond_wait(&s->queue, &s->mutex);
 pthread_mutex_unlock(&s->mutex);
}
void start(state_t *s) {
 pthread_mutex_lock(&s->mutex);
 s->state = started;
 pthread_cond_broadcast(&s->queue);
 pthread_mutex_unlock(&s->mutex);
}

CS33 Intro to Computer Systems XXXIV–40 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Start/Stop
• Start/Stop interface

void wait_for_start(state_t *s){
 pthread_mutex_lock(&s->mutex);
 while(s->state == stopped)
 pthread_cond_wait(&s->queue,
 &s->mutex);
 pthread_mutex_unlock(&s->mutex);
}
void start(state_t *s) {
 pthread_mutex_lock(&s->mutex);
 s->state = started;
 pthread_cond_broadcast(&s->queue);
 pthread_mutex_unlock(&s->mutex);
}

Not a Quiz

You’re in charge of
designing POSIX threads.
Should pthread_cond_wait
be a cancellation point?

a) no
b) yes; cancelled

threads must
acquire mutex
before invoking
cleanup handler

c) yes; but they don’t
acquire mutex

This example illustrates why it’s important that threads cancelled while in
pthread_cond_wait must first lock the mutex before calling their cleanup handler. In
this example, it’s important (for an unspecified reason) that read be called while the
mutex is locked and should_wait is false. If the thread receives a cancel and
cleanup_handler is called, it won’t be known whether the cancel occurred within
pthread_cond_wait or within read. Thus cleanup_handler must perform the same
actions in both cases. Since the thread must unlock the mutex if the cancel occurred
while the thread was in read, it must also unlock the mutex if the cancel occurred while
the thread was in pthread_cond_wait. Thus, it’s important that a thread cancelled while
in pthread_cond_wait lock the mutex before it calls its cleanup handler, so that it’s
locked when the thread enters the cleanup handler.

CS33 Intro to Computer Systems XXXIV–41 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Cancellation and Conditions

pthread_mutex_lock(&m);
pthread_cleanup_push(cleanup_handler, &m);
while(should_wait)
 pthread_cond_wait(&cv, &m);

read(0, buffer, len); // read is a cancellation point

pthread_cleanup_pop(1);

Here we use phtread_mutex_unlock as the cleanup handler for our start/stop interface.

CS33 Intro to Computer Systems XXXIV–42 Copyright © 2023 Thomas W. Doeppner. All rights reserved.

Start/Stop
• Start/Stop interface

void wait_for_start(state_t *s){
 pthread_mutex_lock(&s->mutex);
 pthread_cleanup_push(
 pthread_mutex_unlock, &s);

 while(s->state == stopped)
 pthread_cond_wait(&s->queue, &s->mutex);
 pthread_cleanup_pop(1);
}
void start(state_t *s) {
 pthread_mutex_lock(&s->mutex);
 s->state = started;
 pthread_cond_broadcast(&s->queue);
 pthread_mutex_unlock(&s->mutex);
}

